Epreuve écrite

Examen d	le	fin	ď'	études	secondaires	201	2
----------	----	-----	----	--------	-------------	-----	---

Section: B et C

Branche: chimie

Numéro d'ord	re du candidat

ANN = application non numérique (20), QC = question cours (19), AN = application numérique (21)

I. Réactivité des cycles aromatiques

5 points

On désire réaliser une substitution électrophile par le dichlore dans le benzaldéhyde.

- a. Etablir les différentes formes contributives à la mésomérie du benzaldéhyde. (ANN 2)
- b. Déterminer et justifier la ou les position(s) possible(s) du groupement chloro dans le cycle aromatique. (ANN 1)
- c. Etablir l'équation chimique globale en utilisant les formules de structure et en indiquant le catalyseur. (ANN 2)

II. Identification d'un alcool inconnu

12 points

On désire identifier un alcool non cyclique saturé inconnu. Pour ce faire, une solution 0,75 M de permanganate de potassium est versée au goutte-à-goutte dans 2,64 g de cet alcool en milieu acide. Il faut verser jusqu'à 32 ml de la solution, jusqu'à ce que l'alcool soit totalement oxydé.

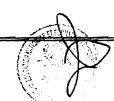
- a. Etablir l'équation d'oxydoréduction (utiliser la formule générale de l'alcool). (ANN 4)
- b. Calculer la masse molaire de l'alcool et déduire la formule brute. (AN 4)

Lorsque cet alcool est oxydé en présence du catalyseur cuivre, le réactif de Schiff rougit en présence des produits de cette réaction.

- c. Quelles sont la formule semi-développée et le nom de cet alcool, sachant que la molécule renferme un carbone asymétrique ? (ANN 2)
- d. Représenter la formule spatiale de l'énantiomère de configuration R (en nomenclature CIP). (ANN 1)
- e. Représenter ce même énantiomère en projection de Newman le long de l'axe C1 → C2 dans sa conformation la plus stable. (ANN 1)

III. Estérification

9 points


- a. Etablir l'équation de la condensation de l'acide éthanoïque avec le propan-2-ol. (ANN 1)
- b. Comment peut-on déplacer l'équilibre de cette réaction en se basant sur le principe de Le Chatelier ? (QC 3)
- c. Etablir la réaction chimique qui permet de modifier l'acide éthanoïque en une substance plus active envers les réactifs nucléophiles. Expliquer pourquoi cet acide modifié augmente le rendement de l'estérification. (QC 3)
- d. Etablir l'équation d'estérification de l'acide nitrique avec l'éthanediol. (ANN 2)

IV. Propriétés de composés organiques

11 points

- a. Comparer la volatilité des alcools avec celle des aldéhydes et celle des hydrocarbures de masse moléculaire comparable. Expliquer ! (QC 6)
- b. Présenter et expliquer les différences entre les forces basiques de l'ammoniac et des amines primaires, secondaires et tertiaires. (QC 5)

112

Examen de fin d'études secondaires 2012

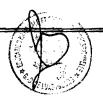
Section: B et C

Branche: chimie

Numéro d'ord	re du candidat

V. Les acides et les bases

12 points


- a. Quelle est la différence entre une base d'Arrhenius et une base de Brønsted ? (QC 2)
- b. Etablir l'équation de la réaction de protolyse qui se déroule lorsque l'on réunit de l'acide hypochloreux avec du nitrite de potassium. Indiquer et justifier si la réaction est complète (→), équilibrée (⇐→) ou nulle (←). (ANN 2)
- c. Le pH d'une solution aqueuse de méthylamine vaut 12. 25 ml de cette solution sont dilués à 200 ml. Calculez le pH de la solution diluée, ainsi que le degré de dissociation de la méthylamine avant et après la dilution. Interprétez la variation du degré de dissociation. (AN 7 + ANN 1)

VI. Titrage de l'acide méthanoïque

11 points

10 ml de solution aqueuse d'acide méthanoïque de concentration inconnue sont titrés par une solution d'hydroxyde de sodium de concentration égale à 0,2 mol·l⁻¹. Le point d'équivalence est atteint après un ajout de 14 ml de solution de base.

- a. Etablir l'équation de la réaction entre l'acide et la base. (ANN 1)
- b. Calculer la concentration initiale de l'acide méthanoïque. (AN 1)
- c. Calculer le pH de la solution d'acide méthanoïque avant le titrage. (AN 2)
- d. Calculer le pH de la solution après un ajout de 20 ml de solution d'hydroxyde de soude. (AN 2)
- e. Calculer le pH de la solution au point d'équivalence. (AN 2)
- f. Calculer le volume de solution d'hydroxyde de soude nécessaire pour obtenir un pH de 5. (AN 3)

TABLEAU PERIODIQUE DES ELEMEN

1 IA 2 IIA 13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA 18 VIIIA 1,0 1 H 4,0 ₂He 12,0 10,8 14,0 16,0 19,0 20,2 9,0 2 3 Li ₄Be ₉F 5 B 7 N ₆C 10 Ne 80 groupes secondaires métaux de transition 27,0 28,1 35.5 39,9 23,0 24,3 31.0 32,1 11 Na 12 Mg 16 S 3 IIIB 13 Al 14 Si 17 CI 18 Ar 4 IVB 5 VB 7 VIIB 8 VIIIB 9 VIIIB 10 VIIIB 11 IB 12 IIB 15 P 6 VIB 40,1 54,9 55,8 58.7 65,4 69,7 72,6 39,1 45.0 47,9 50,9 52,0 58,9 63,5 74,9 79,0 79,9 83,8 4 4 ₂₂ Ti 35 Br ₁₉ K |₂₀ Ca |₂₁ Sc 24 Cr | 25 Mn | 26 Fe | 27 Co | 28 Ni | 29 Cu | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se | 36 Kr 106,4 107,9 114,8 87,6 91,2 92.9 95.9 101,1 102,9 112,4 118,7 121,8 127,6 126,9 131,3 85,5 5 39 **Y** 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In | 50 Sn | 51 Sb | 52 Te 37 Rb 38 Sr 40 Zr 54 Xe 53 137,3 178,5 180,9 183,8 186,2 190,2 192,2 195,1 197,0 200,6 204,4 207,2 209,0 210 222 132,9 57 bis 71 209 6 55 Cs | 56 Ba La-Lu 72 Hf | 73 Ta | 74 W | 75 Re | 76 Os 78 Pt | 79 Au | 80 Hg 81 TI 83 Bi 84 Po 85 At 86 Rn 82 Pb 77 **|r** 262 272 223 226 89 bis 103 261 262 263 265 268 269 277 289 289 293 $_{104}\,Rf\Big|_{105}\,Db\Big|_{106}\,Sg\Big|_{107}\,Bh\Big|_{108}\,Hs\Big|_{109}\,Mt\Big|_{110}\,_{Uun}\Big|_{111}\,_{Uuu}\Big|_{112}\,_{Uub}$ 114 Uuq 116 Uuh 118 Uuo

principaux

groupes

lanthanides	138,9	140,1	^{140,9}	144,2	147	150,4	152,0	157,3	158,9	162,5	164,9	^{167,3}	168,9	173,0	175,0
	57 La	58 Ce	₅₉ Pr	60 Nd	61 Pm	62 Sm	63 E U	64 Gd	65 Tb	66 Dy	67 HO	₆₈ Er	69 Tm	70 Yb	71 Lu
actinides	227	232	231	238	237	244	243	247	247	²⁵¹	252	257	258	259	260
	89 A C	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	₉₈ Cf	99 Es	100 Fm	₁₀₁ Md	₁₀₂ No	103 Lr

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H₃O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO₃	ClO ₃	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl3COO-	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO.	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H₂SO₃	HSO ₃ ⁻	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO ₄	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO₂	ClO ₂	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H ₂ PO ₄	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H ₂ O) ₆ ³⁺	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH ₂ CICOO ⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H ₂ O) ₆ ³⁺	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN-	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO-	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ -	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

	T	T	T	
ac. éthanoïque	СН₃СООН	CH₃COO⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO⁻	an. propanoate	4,87
cat. hexaqua aluminium	Al(H ₂ O) ₆ ³⁺	Al(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C₅H₅N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO₃ ⁻	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ² ·	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO	CIO	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H ₂ O) ₆ ²⁺	Zn(OH)(H ₂ O) ₅ ⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃)₃NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H₅OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO₃ ⁻	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO ⁻	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH ₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C₂H₅)₂NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH ⁻	anion hydroxyde	15,74

acides de force négligeable

bases fortes(plus fortes que OH⁻)
O²⁻, NH₂⁻, anion alcoolate RO⁻)

