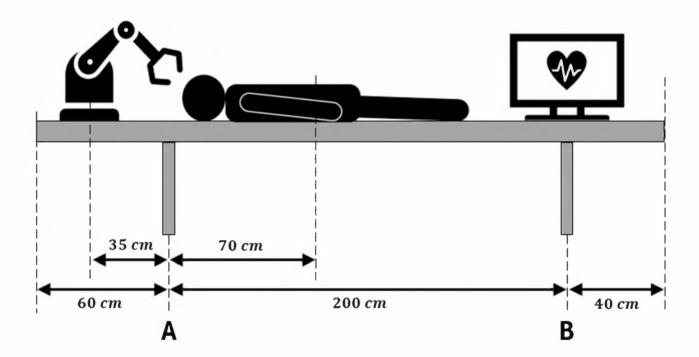

Aufgabe 1: (3 + 7 + 2 = 12 Punkte)

Die Rückenlehne OC eines Krankenhausbettes ist homogen ($m_R=40\ kg$) und kann sich um den Punkt O drehen.

Das Gewicht eines Patienten ($m_P=60\ kg$) wirkt am Punkt A.

Eine Befestigung am Punkt B hält die Rückenlehne im Gleichgewicht.

Es gilt:
$$OA = \frac{1}{4}OC$$
, $OG = \frac{1}{2}OC$, $OB = \frac{3}{4}OC$, $\alpha = 150^{\circ}$.



- a. Fertigen Sie eine Skizze mit allen relevanten Kräften und Hebelarmen an.
- b. Berechnen Sie die Kraft in der Befestigung.
- c. Welche Kraft ist notwendig, um die Rückenlehne im Gleichgewicht zu halten, wenn $\alpha=90^\circ$ ist. Begründen Sie Ihre Antwort! (ohne Rechnung)

Aufgabe 2: (7 Punkte)

Auf einem homogenen Operationstisch ($m_T=100\ kg$) befinden sich ein Patient ($m_P=60\ kg$), ein Operationsroboter ($m_R=50\ kg$) und ein Monitor ($m_M=10\ kg$) zur Überwachung des Patienten.

Berechnen Sie die Auflagerkräfte in den Punkten A und B für die gezeichnete Situation.

Aufgabe 3: (9 Punkte)

Eine Sammellinse der Brennweite $37,5\ cm$ wird entlang der optischen Achse zwischen einem Gegenstand und einem Schirm verschoben. Der Abstand zwischen Gegenstand und Schirm bleibt konstant und beträgt $2\ m$.

Es gibt zwei mögliche Positionen für die Sammellinse, sodass ein scharfes reelles Bild entsteht. Berechnen Sie für jeden Fall die Gegenstandsweite, die Bildweite und den Abbildungsmaßstab.

Aufgabe 4: (2 + 2 + 3 + 2 = 9 Punkte)

Ein Lichtstrahl tritt aus Glas ($n_{Glas} = 1.5$) in Luft ein.

- a. Fertigen Sie eine Skizze der Situation an. Zeichnen Sie den einfallenden, den reflektierten und den gebrochenen Strahl ein.
- b. Berechnen Sie den Einfallswinkel des Lichtstrahls, wenn der Brechungswinkel $\beta=45^\circ$ beträgt.
- c. Erklären Sie, was man unter Totalreflexion versteht.
- d. Berechnen Sie den Grenzwinkel der Totalreflexion für den oben genannten Übergang von Glas in Luft.

Aufgabe 5: (2 + 2 = 4 Punkte)

- a. Was versteht man unter Photoeffekt?
- b. Was versteht man unter Grenzfrequenz?

<u>Aufgabe 6: (2 + 1 + 4 = 7 Punkte)</u></u>

Eine Ablösearbeit von 4,4 eV ist erforderlich, um Elektronen aus einer Kupferschicht herauszulösen.

- a. Berechnen Sie die Grenzwellenlänge (in nm).
- b. Die Kupferschicht wird nacheinander mit blauem Licht $(450 \ nm)$ und mit rotem Licht $(700 \ nm)$ bestrahlt. Werden durch Einwirkung von Licht dieser Wellenlängen Photoelektronen ausgelöst? Begründen Sie ohne Rechnung.
- c. Welche maximale Geschwindigkeit besitzen die ausgelösten Elektronen, wenn die Wellenlänge des einfallenden Lichtes $100 \ nm$ beträgt?

Aufgabe 7: (2 + 6 + 4 = 12 Punkte)

Von den verschiedenen radioaktiven Iodatomen, die bei einem schweren Atomunfall in die Atmosphäre gelangen können, ist Iod-131 das häufigste. Iod-131 ist ein β^- Strahler. Es verliert alle acht Tage die Hälfte seiner Aktivität.

- a. Schreiben Sie die Zerfallsgleichung an.
- b. Berechnen Sie die Aktivität von 524 *g* lod-131.
- c. Berechnen Sie die Zeit in Tagen, nach der die Aktivität von Iod-131 um 90% abgenommen hat.

Naturkonstanten

Masse des Protons: $m_p = 1,673 \cdot 10^{-27} \, kg$

Masse des Neutrons: $m_n = 1,674 \cdot 10^{-27} \, kg$

Masse des Elektrons: $m_e = 9{,}109 \cdot 10^{-31} \, kg$

Elektrische Elementarladung: $e = 1,602 \cdot 10^{-19} C$

Vakuumlichtgeschwindigkeit: $c = 3 \cdot 10^8 \frac{m}{s}$

Planck-Konstante: $h = 6,626 \cdot 10^{-34} J \cdot s$

Atomare Masseneinheit: $1 u = 1,661 \cdot 10^{-27} kg$

Avogadro-Konstante: $N_A = 6,022 \cdot 10^{23} \text{ mol}^{-1}$

1 1,008 0,60(1) 2,2 15" -259/-253 1,-1																	2 4,0026 He
Wasserstoff 3 6,94 -3,040(1) 0,98 [He]2s*	6,94 4 9,0122 Normalpotential				1,008 Relative Atommasse in u -0,00[1] 2,20 Elektronegativität Paving Elektronenkonfiguration 5 10,81 6 12,011 7 14,007 8 15,999 9 18,998 1,000 1,0										Helium 10 20,180 DHI25/20*		
Lithium	Be Beryllium	Symbol -		—∤ ŀ											Fluor	Ne Neon	
11 22,990 -2,713(1) 0,93 NeD5' 99 / 860 Natrium	12 24,305 -2,356[2] 1,31 NeDs1 649/1107 Mg 2 Magnesium	1.31 Name - Wa33El 31011									13 26,982 -1,676 3 1,61 Nel305'36' Atuminium	14 28,085 -0,709(4) 1,9 (Nol39/3g/ Sillicium	15 30,974 -0,5023 2.19 !Nel3u/3p' 64/281 Phosphor	16 32,06 0,144(+2) 2,59 (544)20/20/ 113/445 B Schwetel	17 35,45 1,0581-11 2,16 (34e)20/30 ⁴ -181 /-24 CL 7,5,3 1,+8 Chlor	18 39,948 (Nel30/3pr -189/-186 Ar Argon	
19 39,098 -2,925(1) 0,02 (Ar)A+1 63 / 740 Kalium	20 40,078 -2,84(2) 1 (Ar)649 839 / 1466 Calcium	21 44,956 -2,03(3) 1,36 (Ar33d/46 ² 1561/2836 SC Scandium		23 50,942 -1,186(2) 1,43 (Ar)3d/Gr/ 1890/3378 V 5, 4, 3, 2, 0 Vanadium	-6,91362) 1,66 (Ar)74%5' 1890/2640	25 54,938 -1,18822 1,55 (Ar)38444 1244 / 2012 Mn 3, 2, 0 Mangan	26 55,845 -0,448(2) 1,83 (Arribertal 1535/2750 Fe	27 58,933 -0,277121 1,48 (Ar)34*(Ar) 1495/2070 Cobalt	28 58,693 -0,257(2) 1,91 [Ar[35]/2732 Ni 1,2,8	29 63,546 e,348(2) 1,9 f,6/304%e,1 1083/2595 Cu 2,1 Kupfer		31 69,723 -0,529191 1,81 (G4/308*14-14-6)* 30 / 2007 Gallium	32 72,63 -0.00441 2,61 [24/30*149/46* 937/2000 Germanium	33 74,922 0,24030 2,10 (Ar)3d**Lollor 017/615 wit. AS 6,3,-3 Arsen	34 78,96 -0,40(-2) 2,55 [Ar]36*16*46* Selen	35 79,904 1,0651-11 2,96 [Ariberto/top* -7/59 Brom	36 83,798 [Aritist Nation 157/-153 Kr Krypten
37 85,468 -2,*24(1) 0,92 (06)5** Rb Rubidium	38 87,62 -2,89(2) 0,95 (6/354* T49/1304 Strontium	39 88,906 -2,37(30 1,22 (Kr)66d*5a* 1622 / 3300 Yttrium	40 91,224 -1,55ki 1,32 Kr/ku/5u/ 1852/4377 Zr Zirconium	41 92,906 -1,899(3) 1,6 Kr 64/5n° 2446/4728 No 5,3 Niob	42 95,962 -0,20(3) 2,16 Dt/ Ld ² Sin ¹ 2617/4025 Molybdän	43 98,906 0,28(4) 1,9 (Kr)44°5a° 2172 / 4077 TC Technetium	Ruthenium	45 102,91 -0,7631 2,20 (60)44/54 1964/2738 Rh 2,1,0 Rhodium	46 106,42 0,915(2) 2,2 [Kr)44" Pd 4,2,0 Pattadium	47 107,87 0,799(1) 1,93 (%) [4d**5a** 962/2163 Ag Silber	48 112,41 -9,40021 1,49 106/649-94 321/745 Cd Cadmium	49 114,82 -0.343131 1,78 Dtr/4d 3 19 137 / 2000 In Indium	50 118,71 -0,137121 1,96 DU/Ld 3 38 222,8/2407 Sn 4,3 Zinn	51 121,76 0,19013 2,06 (Kr)44*5arip* 431 A/1435 Sb 5, 2, -3 Antimon	52 127,60 -0,61(-2) 2.1 Ke/ke/16/5p' 450 / 1910 Tellur	53 126,90 0,534(-1) 2,46 10,746 12-26 114,7164 2,5,1 -3 lod	54 131,29 2,6 KF}\Selfs\Selfs\Selfs -112/-100 Xe Xenon
55 132,91 -2,923(1) 0,79 D20(4) 28 / 478 Caesium	56 137,33 -2,92 21 0,09 DE0161 725 / 1496 Barlum		72 178,49 -1,7648 1.3 Xe)44*96*66* 2227 / 4462 Hafnium	73 180,95 -6,812151 1.5 Dicid=16-66-7 2996/5425 Tantal	74 183,84 -8,11968 2,36 Xel41959667 3610/5659	75 186,21 9,254 1,9 D034F56F6 2160 /5430 Re 2,-1 Rhenium	76 190,23 9,487(4) 2,2 (XE347-5644) 2054 / 5027 OS 2, 0, -2 Osmium	1,154(3) 2,2 Dis341*54'66' 2410 / 4530	78 195,08 1,14823 2,2 Diebar-66441 1772/3027 Ptalin	79 196,97 1,071[1] 2,54 1064/2908 Au 3,1 Gold	80 200,59 8,86821 2 Disjur-54*46* -397/357 Hg 2,1 Quecksiber	81 204,38 -0,336 1 1,62 Dielar 64 64 67 T 323/1657 Thaillium	82 207,2 -0.125121 2,32 Da541 328 / 1749 Pb 4,3	83 208,98 9,317130 2,02 [Juli 1 5 494 271 / 1563 Bi 5, 3	84 209,98 <-1,6[-2] 2 (5634 56 66 66 69 254 7 62 Polonium	85 210,99 0,25(-1) 2,2 Dos/41 5 4 4 4 302 / 370 At 1,-8 Astat	86 222,02 Disjuir Schlarder -71 / -62 Radon
87 223,02 -2,9(1) 0,7 [Re/74* 27 / 477	88 226,03 -2,916(2) 0,9 [Re]76° 700 / 1140		104 267,12 (8h)34"44"?v"	105 268,13 0m/s/~447v²	106 271,13 (h)3/467/	107 267,13 (Re)31"46"76"	108 277,15	109 276,15 (8a)56**647%*	110 281,16 (8x)55°44'74'	111 280,16 (8e)55'44'76'	112 285,17 (m:155*541*7\s1	113 284,18 [8x 55*4d*7\7p]	114 289,19	115 288,19 [bh]56*-Cd**74*79*	116 292,20 [Br/]36*446*75*79*	117 (294) [Red56************************************	118 (294) [8031:44:76/79]
Fr '	Ra ²		Rf Rutherfordium	Db Outnium	Sg Seaborgium	Bh Bohrium	Hs Hassium	Mt Meitnerlum	Ds Darmstadtium	Rg Roeniganium	Cn Copernicium	Nh Nihonium	Flerovium	Mc Moscovium	LV	Ts Tenness	Og Oganesson

57 138,	91 58 140,12 1,1 -1,33(4) 1,12	59 140,91	60 144,24	61 146,92	62 150,36	63 151,96	64 157,25	65 158,93 =2,31(30 1,2	66 162,50	67 164,93	68 167,26	69 168,93	70 173,05	71 174,97
(Xe)Sd	04" (Xe)4/'6s'	Dta J.CF Mari	Dielither,	Diejariasi	[Ke]41'6s2	\$66,01,01	[Xe]4/5d/64*	DENJAPSe ¹	Districted.	Diejserfant	[[6]411662	Diagatinas'	[Ma]41"6s1	[Xe]4f"5d'6s"
920/3	147 798/3643	931/3250	1024/3074	131/2730	1074 / 1794	824/1439	1312/3273	1354 / 3230	1407 / 2542	1474/2728	1497 / 2967	1545 / 1967	819/1196	1663/3395
La	' Ce ''	Pr "	Nd '	Pm '	5m "	Eu "	Gd '	Ib "	Dy '	Ho '	Er '	lm *	Yb **	Lu '
Lanthan	Cer	Praseodym	Neodym	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thutium	Ytterbium	Lutelium
89 227,	03 90 232,04	91 231,04	92 238,05	93 237,05	94 244,06	95 243,06	96 248,07	97 249,08	98 252,08	99 254,09	100 257,1	101 260,10	102 259,10	103 262,11
-2,13030 (Dh/36d	1,1 -1,83(4) 1,3 7v* (Rn)447v*	-3,1955 1,5 [Rn35F66To ²	-0,836(3) 1,38 [Rn]5f4471v*	-1,01(5) 1,36 (Re)5F6d7+1	-1,25%I 1,28 (Re)517+2	-1,95(2) 1,3 [Rn]5('7a*	-2,86(3) 1,3 [Rn]58'64'74'	-1,96(3) 1,3 [Re35f761	-1,99(3) 1,3	-1,900) 1,3 (Rn)5(******	-2,6133 1,3 [Ro]51*79*	-2,\$5(2) 1,3 [Ra35(*7a*	-2,6(2) 1,3 (R _b)5(*7 ₈ *	-2,1131 1,3 (Rel3F*44/7e*
1050/3		1845 / 4029	1133/3930	639 / 3902	641 / 3232	994 / 2607	1340/3110	986 / 2950	950/-	840/-	900/-	.1.	.1.	-1-
Ac	'Th '	Pa "	U 45,4.3	Np **;	Pu 😘	Am 8	Cm "	Bk "	Cf '	Es '	Fm '	Md '	No "	Lr '
Actinium	Thorium	Protactinium	Uran	Neptunium	Plutonium	Americium	Curium	Berkelium	Catifornium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium