

Numéro du candidat :

Dans toutes les questions, le plan est muni d'un repère orthonormé.

Question 1 [4+4 = 8 points]

Démontrer les théorèmes suivants :

- 1) Pour tout réel a et tout réel b, $\exp(a+b) = \exp(a) \cdot \exp(b)$.
- 2) La fonction ln est dérivable sur]0; $+\infty$ [et $\forall x \in$]0; $+\infty$ [: $(\ln)'(x) = \frac{1}{x}$

Question 2 [6 points]

Soit la fonction f définie sur $]-\infty;-2] \cup [4;+\infty[$ par $f(x)=(3x+6)\sqrt{x^2-2x-8}.$

Étudier la dérivabilité de f aux bornes finies de l'ensemble de définition. Interpréter graphiquement les résultats obtenus.

Question 3 [3+5 = 8 points]

Résoudre dans $\mathbb R$ les inéquations suivantes :

a)
$$5e^x - 18e^{-x} < 9$$

b)
$$\ln \left(\frac{3x-2}{x+1} \right) \ge \ln(2-x) + \ln 2$$

Question 4 [1+2+3+3+4+3 = 16 points]

Soit la fonction f définie par $f(x) = \ln(e^{2x} - 3e^x + 4)$ et C_f sa courbe représentative dans un repère orthonormé.

- a) Montrer que le domaine de définition de f est \mathbb{R} .
- b) Déterminer les limites de f aux bornes du domaine de définition et interpréter graphiquement les résultats.
- c) Montrer que C_f admet une asymptote oblique d en $+\infty$, dont on déterminera une équation.
- d) Étudier la position de C_f par rapport à d.
- e) Dresser le tableau de variation de f.
- f) Tracer C_f et ses asymptotes dans un repère orthonormé d'unité 2 cm.

Question 5 [7 points]

Soit la fonction f définie sur $\left[-\frac{17}{3}; +\infty\right[$ par $f(x)=(1-3x)\mathrm{e}^{\frac{1}{3}x}$ et C_f sa courbe représentative dans un repère orthonormé.

Combien de tangentes à la courbe C_f sont parallèles à la droite Δ d'équation $y=-\frac{2}{3}x-2$?

Question 6 [2+2+4 = 8 points]

Soit la fonction f définie sur $\mathbb{R}\setminus\{-3;3\}$ par

$$f(x) = \frac{1}{x^2 - 9}$$

1) Déterminer les réels a et b tels que pour tout $x \in \mathbb{R} \setminus \{-3, 3\}$,

$$f(x) = \frac{a}{x-3} + \frac{b}{x+3}$$

2) En déduire la valeur exacte de

$$I = \int_{4}^{6} \frac{1}{x^2 - 9} dx$$

Mettre le résultat sous la forme $a \cdot \ln b$, où a et b sont deux nombres réels strictement positifs.

3) Déterminer la valeur exacte de

$$J = \int_{1}^{6} \frac{\ln(x^2 - 9)}{x^2} dx$$

Question 7 [1+1+2+3 = 7 points]

L'espace est muni d'un repère orthonormé direct $(0; \vec{\iota}, \vec{j}, \vec{k})$.

On donne les points A(1; -3; 5), B(-2; -1; 4) et C(3; 0; 2).

- 1) Déterminer une représentation paramétrique de la droite (AB).
- 2) Vérifier que le point C n'appartient pas à la droite (AB).
- 3) Déterminer une équation cartésienne du plan P perpendiculaire à (AB) et passant par C.
- 4) Déterminer les coordonnées du projeté orthogonal H de C sur (AB).