EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE								
Date :	07.06.24		Horaire :	08:15 - 10:45	i	Durée :	150 minutes	
Discipline :	СНІМІ	Туре :	écrit	Section(s):		GSN		
					Numér o du ca n	di da t :		

<u>Allgemeine Bemerkung:</u> es gibt immer nur eine einzige richtige Antwort bei den Fragen mit Mehrfachantworten (Multiple choice questions)

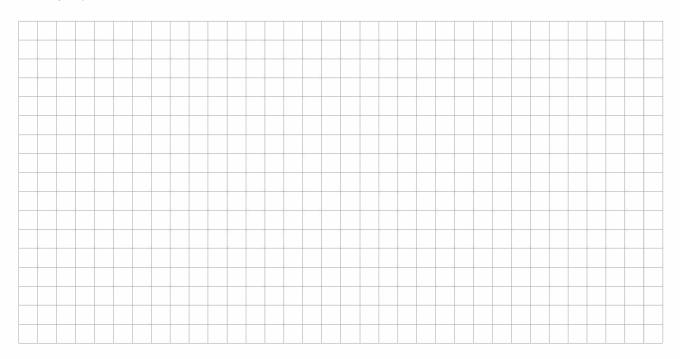
I. <u>Säure-Base-Reaktionen (6,5+4,5+2=13 Punkte)</u>

Frage 1: Gehaltsangaben und pH-Wert (6,5)

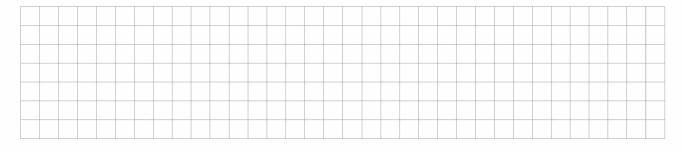
a) 200 ml einer Kaliumhydrogensulfit-Lösung mit der Stoffmengenkonzentration 0,20 mol/l (= Lösung A) sollen, ausgehend von festem Kaliumhydrogensulfit-dihydrat-Salz hergestellt werden. Berechnen Sie die benötigte Masse an Salz. (1,5)

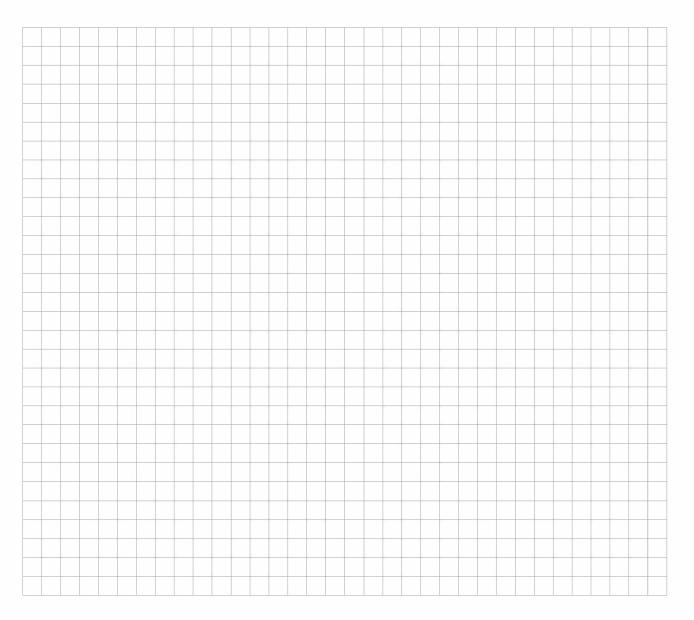

b) Zur Verfügung stehen nun folgende Lösungen:

Lösung B: 30 ml Kaliumiodid-Lösung 0,3 M


Lösung C: 20 ml Lösung A wurden in einem 50 ml-Messkolben mit dest. Wasser aufgefüllt

i) Bestimmen Sie den pH-Charakter der Lösung C. Geben Sie dafür die Lösungsgleichung dieses Salzes in Wasser an, begründen Sie Ihre Antwort ausführlich und geben Sie die relevante Protolysegleichung an. (2,5)

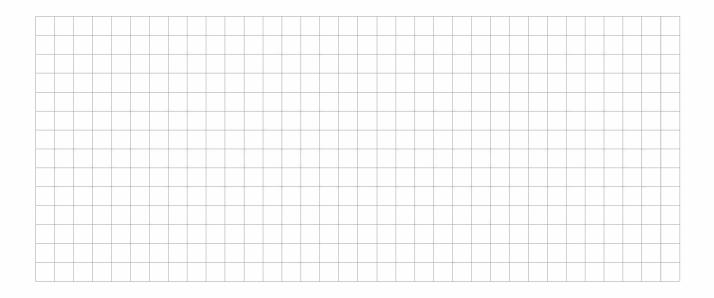

ii) Die Lösungen B und C werden nun vermischt. Berechnen Sie den pH-Wert der Endlösung D. (2,5)



Frage 2: Puffer (4,5)

Der pH-Wert des menschlichen Blutes wird unter anderem durch den Kohlensäure/Hydrogencarbonat-Puffer geregelt. Zur Herstellung dieses Puffers im Labor wird so lange eine Salzsäurelösung zu einer Natriumhydrogencarbonatlösung gegeben, bis der pH-Wert des Blutes 7,40 erreicht ist. Eine Analyse des Puffers zeigt dann, dass in dem Puffer 4,5 g Natriumhydrogencarbonat gelöst sind.

a) Geben Sie die Protolysegleichung des Puffers an und berechnen Sie die Stoffmengen der im Puffer vorhandenen pH-relevanten Teilchen. (2,5)



b) Eine Alkalose ist eine Störung des Säure-Base-Haushaltes bei Menschen und Tieren, die ein Ansteigen des pH-Werts im Blut bewirkt. Liegt der pH-Wert im Blut über 7,45 spricht man von einer Alkalose.

Zu dem Puffer aus a) werden 8·10⁻⁴ mol Hydroxidionen zugegeben. Berechnen Sie den pH-Wert der neuen Lösung und entscheiden Sie, ob eine Alkalose vorliegt oder nicht. Belegen Sie Ihren Lösungsweg anhand einer Stoffmengentabelle. (2)

Frage 3: saure Lösung (2)

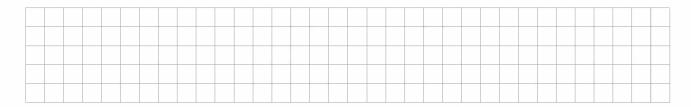
Ordnen Sie alle in einer verdünnten Essigsäure-Lösung vorhandenen Teilchen (die Autoprotolyse des Wassers ist nicht zu vernachlässigen!) nach abnehmender Konzentration. Begründen Sie Ihre Antwort.

II. <u>Elektrochemie (4+5+1=10 Punkte)</u>

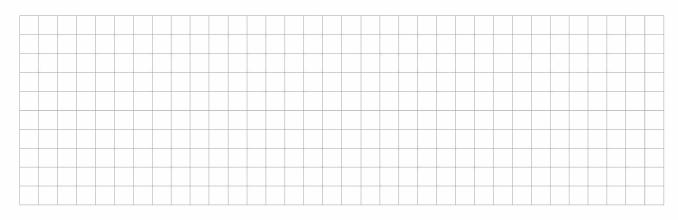
Frage 4: Galvanisches Element (4)

Ein galvanisches Element soll aufgebaut werden. Folgende Redox-Paare sollen dabei eine Rolle spielen: $Br_{(aq)} / Br_{2 (aq)}$ und $H_{2 (g)} / H_{3}O_{(aq)}^{+}$.

a) Stellen Sie den Aufbau dieser galvanischen Zelle in einem beschrifteten Schema dar. Kennzeichnen Sie außerdem die Kathode und die Anode. (3,5)



b) Berechnen Sie die theoretische Zellspannung unter Standardbedingungen. (0,5)



Frage 5: Methanol-Sauerstoff-Brennstoffzelle (5)

a) Bei der Methanol-Sauerstoff-Brennstoffzelle wird, wie bei der klassischen Wasserstoff-Sauerstoff-Brennstoffzelle, der Sauerstoff im Sauren reduziert. Nur dass hier das Methanol das Reduktionsmittel ist und nicht der Wasserstoff. Das Methanol reagiert dabei zu Kohlenstoffdioxid. Stellen Sie die Teilgleichungen der Oxidation sowie der Reduktion auf und kennzeichnen Sie die Anode und Kathode. (3,5)

b) Nennen Sie einen Nachteil und einen Vorteil dieser Brennstoffzelle gegenüber der Wasserstoff-Sauerstoff-Brennstoffzelle. (1,5)

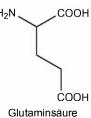
Frage 6: Elektrochemische Spannungsreihe (1)

Für die 4 fiktiven chemischen Elemente (Freudunium (Feu); Schooldum (Sch); Aufgabium (Auf) und Examinium (Ex)) werden bei 3 Versuchen folgende Redoxreaktion beobachtet:

Versuch 1: Feu + Sch $^{3+}$ \rightarrow Feu $^{3+}$ + Sch Versuch 2: Auf + 2 Ex $^{+}$ \rightarrow Auf $^{2+}$ + 2 Ex

Versuch 3: Auf + Sch³⁺ Redoxreaktion läuft nicht ab

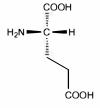
Die 4 Elemente wurden auf der Grundlage dieser Resultate nach zunehmendem Oxidationsvermögen in einer Tabelle geordnet.

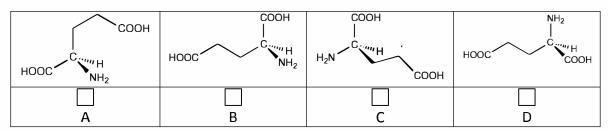

Kreuzen Sie die Tabelle an, die zutrifft. (1)

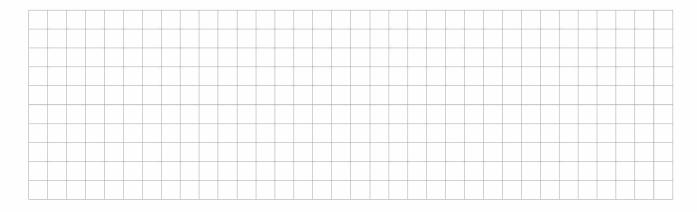
	A		В		C		D
Sch	Sch ³⁺	Sch	Sch ³⁺	Feu	Feu ³⁺	Auf	Auf ²⁺
Auf	Auf ²⁺	Feu	Feu ³⁺	Sch	Sch ³⁺	Feu	Feu ³⁺
Ex	Ex⁺	Auf	Auf ²⁺	Auf	Auf ²⁺	Ex	Ex ⁺
Feu	Feu ³⁺	Ex	Ex⁺	Ex	Ex ⁺	Sch	Sch ³⁺

III. Organische Chemie (3+3+10+10,5+10,5=37 Punkte)

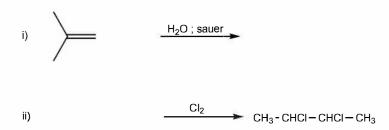
Frage 7: Nomenklatur und Stereochemie (3)


Bei der Blutgerinnung spielen verschiedene Reaktionen der Glutaminsäure, welche Teil eines Proteins mit dem Namen Pré-Prothrombin ist, eine wichtige Rolle. Ein besseres Verständnis dieser Reaktionen könnte helfen Anti-Blutgerinnungsmittel zu entwickeln.


a) Geben Sie den chemischen Namen nach IUPAC der Glutaminsäure an. (1)

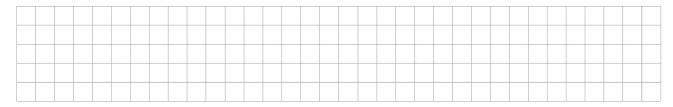

b) Ein Schüler wollte die räumliche Struktur des Moleküls der Glutaminsäure in der Keil-Strich-Schreibweise darstellen. Dies ist sein Ergebnis.

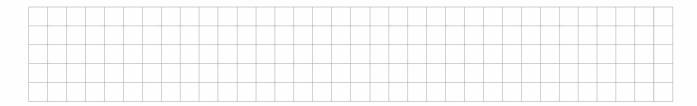
Welche der folgenden Keil-Strich-Strukturen entspricht der Schülerdarstellung? (1)



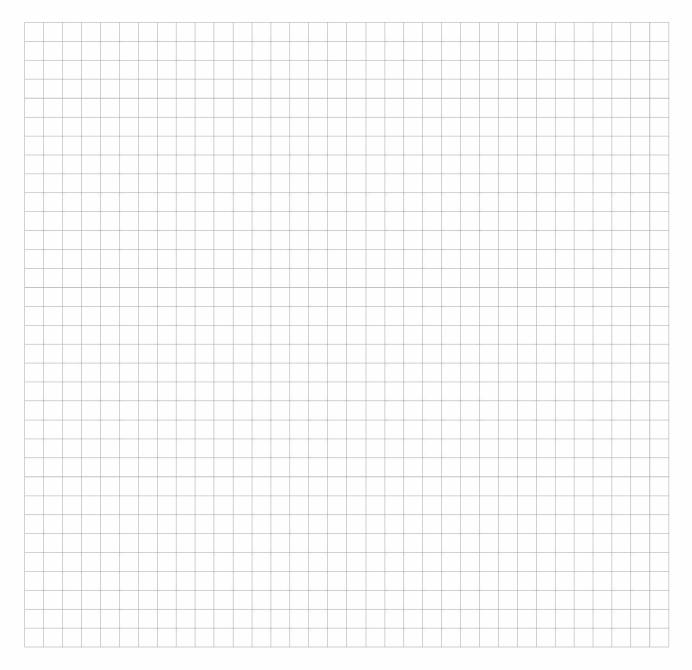
c) Bestimmen Sie die absolute Konfiguration der vom Schüler vorgeschlagenen Struktur der Glutaminsäure und begründen Sie Ihre Antwort anhand der Prioritäten. (1)

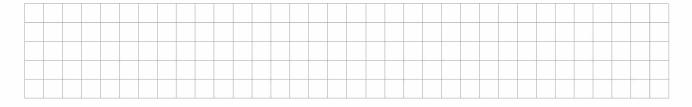
Frage 8: Reaktionstypen (3)


a) Vervollständigen Sie die folgenden Reaktionen mit dem / den fehlenden möglichen Produkt(en) beziehungsweise Edukt(en). Benutzen Sie die gleiche Schreibweise wie im Beispiel vorgegeben. Benennen Sie außerdem den Reaktionstypen.


Frage 9: Synthese eines Stoffes (10)

a) Bestimmen Sie, ob folgende Moleküle gleich sind, oder ob eine Isomerie vorliegt. Begründen Sie Ihre Antwort und benennen Sie gegebenenfalls die Isomerie. (1)

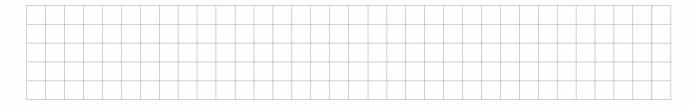



- b) Das Molekül A aus a) wurde unter Lichtausschluss durch eine Reaktion mit Brom hergestellt.
 - i) Geben Sie die Halbstrukturformel und den Namen des organischen Eduktes an. (1)

ii) Benennen Sie den Reaktionstypen und stellen Sie den Mechanismus dieser Reaktion dar. (Halbstrukturformeln, Benennung der einzelnen Schritte, Erklärungen). Benennen Sie außerdem das Produkt. (7)

iii) Bildet sich bei der Reaktion in b) nur ein einziges Produkt oder ein Produktgemisch? Begründen Sie Ihre Antwort! (1)

Frage 10: Identifizierung eines organischen Stoffes (10,5)


Im Labor stehen 3 unbekannte Flüssigkeiten A, B und C, die organische Reinstoffe mit der Summenformel $C_5H_{12}O$ enthalten. Folgende Informationen wurden ermittelt.

	Stoff A	Stoff B	Stoff C
Aufbau	1x Methylgruppe	2x Methylgruppe	1x Methylgruppe
	1x Hydroxylgruppe	1x Hydroxylgruppe	1x Hydroxylgruppe
Produkt der Reaktion	positive DNPH-Probe	positive DNPH-Probe	Negative DNPH-Probe
des Stoffes mit	negative Schiff-Probe	positive Schiff-Probe	negative Schiff-Probe
Kupfer(II)-oxid:			

a) Geben Sie die Skelettformel sowie die Namen der Stoffe A, B und C an. (4,5)


- b) Reagiert B mit Kupfer(II)-oxid so entsteht das Produkt D. Produkt D weist eine positive Fehlingprobe auf.
 - i) Welche Beobachtungen können Sie während der Fehlingprobe tätigen? (0,5)

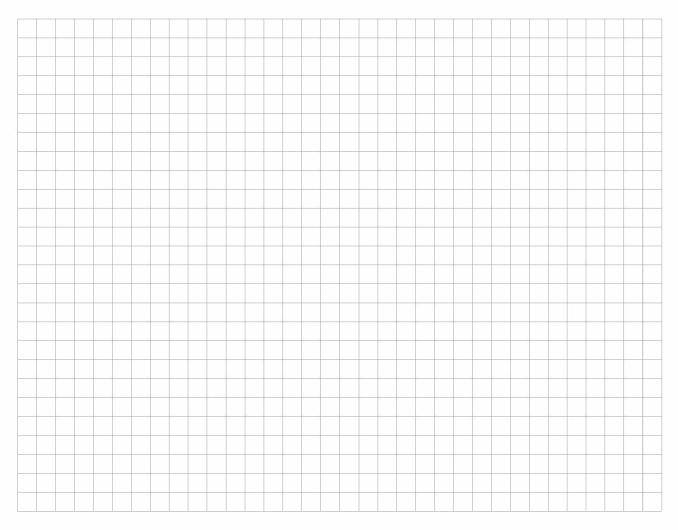
ii) Benennen Sie das Produkt D. (1)

iii) Stellen Sie die globale Gleichung (Skelettformeln benutzen) der Fehlingprobe von D auf und benennen Sie den Reaktionstypen. Begründen Sie Ihre Antwort. (3)

c) Stellen Sie, wenn möglich, die Halbstrukturformel der Produkte der jeweiligen Reaktionen von A und C mit Kupfer(II)-oxid dar und benennen Sie sie. (1,5)

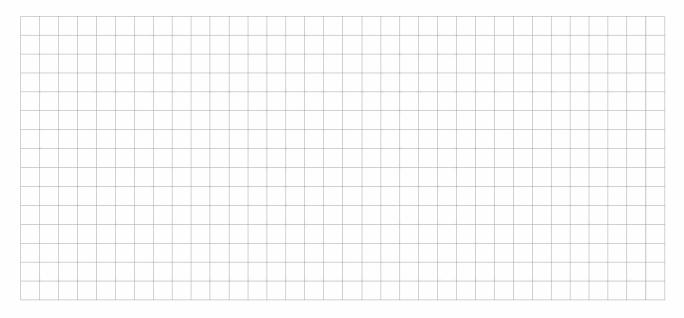


Frage 11: Ester (10,5)


Propansäureisopropylester wurde in Himbeeren, Johannisbeeren, Papaya und Pflaumenschnaps nachgewiesen. Es ist eine leicht entzündbare farblose Flüssigkeit mit aromatischem Geruch. Die Verbindung hat einen bittersüßen Geschmack, der an Pflaumen erinnert und wird als Aromastoff verwendet.

(Isopropanol basiert auf dem Molekül Propan, bei dem ein Wasserstoffatom am mittleren Kohlenstoffatom durch eine Hydroxylgruppe ersetzt wurde.)

a) Stellen Sie die Edukte, aus denen dieser Ester gebildet wurde in der Skelettformel dar und benennen Sie sie nach IUPAC. (2,5)



b) Stellen Sie den Ester anhand der Skelettformel dar und treffen Sie eine Aussage über die Löslichkeit dieses Esters in Wasser. Begründen Sie Ihre Antwort. (3)

c) Geben Sie den Mechanismus der Verseifung für diesen Ester an (Halbstrukturformeln, Benennung der einzelnen Schritte, Erklärungen). (5)

 $R_1 = Ethyl$; $R_2 = Isopropyl$

		-	2	က	4	2	9	7		
	18 VIIIA	4,0 2 He	20.2 10 Ne	39,9 18 Ar	83,8 36 Kr	131,3 54 Xe	222 86 Rn	293 118 Uuo	175,0 71 Lu	260 103 Lr
	16 VIA 17 VIIA 18 VIIIA		19,0 9 F	35,5 17 C l	79,9 35 Br	126,9 53	²¹⁰ 85 At		173,0 70 Yb	259 102 No
anddnub			16,0	32,1 16 S	^{79,0} 34 Se	127,6 52 Te	209 84 Po	289 116 Uuh	167,3 168,9 173,0 68 Er 69 Tm 70 Yb	251 252 257 258 259 260 98 Cf 99 Es 100 Fm ₁₀₁ Md 102 No 103 Lr
drub	15 VA		14,0 7 N	31,0 15 P	74,9 33 AS	121,8 51 Sb	209,0 83 Bi			257 100 Fm
	14 IVA		12,0 6C	28.1 14 Si	69.7 72.6 31 Ga 32 Ge	118,7 50 Sn	207,2 82 Pb	289 114 Uuq	164,9 67 H 0	252 99 Es
	13 IIIA		10,8 5 B	27,0 13 AI	69,7 31 Ga	114,8 49 In	204,4 81 TI		162,5 66 Dy	²⁵¹ ⁹⁸ Cf
				12 118	63,5 65,4 29 Cu 30 Zn	106,4 107,9 112,4 46 Pd 47 Ag 48 Cd	197,0 200,6 79 Au 80 Hg	277 112 Uub	158,9 65 Tb	237 244 243 247 247 93 Np 94 Pu 95 Am 96 Cm 97 Bk
ā				11 18	63,5 29 Cu	107,9 47 Ag		272 111 Uuu	157,3 64 Gd	²⁴⁷ ₉₆ Cm
men				9 VIIIB 10 VIIIB	58,7 28 Ni		195,1 78 Pt	269 110 Uun	152,0 63 Eu	243 95 Am
er Ele				9 VIIIB	58,9 27 Co	102,9 45 Rh	192,2 77 F	268 109 Mt	150,4 62 Sm	244 94 PU
Periodensystem der Elemente			Nebengruppen	8 VIIIB	52,0 54,9 55,8 58,9 24 Cr 25 Mn 26 Fe 27 Co	92,9 95,9 99 101,1 102,9 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh	190,2 76 OS	2 263 265 268 269 272 277 20b 106 Sg 107 Bh 108 Hs 109 Mt 110 Uun 111 Uuu	144,2 147 150,4 152,0 157,3 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd	237 93 Np
nsys			Nebeng	7 WIB	54,9 25 Mn	99 43 TC	186,2 75 Re	262 107 Bh		238 92 U
riode				6 VIB	52,0 24 Cr	95,9 42 Mo	183,8 74 W	263 106 Sg	140,9 59 Pr	32 231 Th 91 Pa
Das Pe				5 VB	50,9 23 V	92,9 41 Nb	180,9 73 Ta	262 105 Db	140,1 58 Ce	²³² ₉₀ Th
				4 IVB	47,9 22 Ti	91,2 40 Zr	178,5 72 Hf	261 26 104 Rf 105 L	138,9 14 57 La 58 (227 23 89 AC 90 T
				3 IIIB	45,0 21 SC	88,9 39 Y	57 bis 71 La-Lu	89 bis 103 AC-Lr	oide	Je
Haupt -	2 IIA		9.0 4 Be	24,3 12 Mg	40,1 45,0 20 Ca 21 Sc	85,5 87,6 37 Rb 38 Sr	137,3 56 Ba	226 88 Ra	Lanthanoide	Actinoide
Наг	1 IA	1,0 T	6,9 3 Li	23.0 24.3 11 Na 12 Mg	39,1 19 K	85,5 37 Rb	132,9 55 Cs	223 226 89 bis 103 3 87 Fr 88 Ra Ac-Lr 10	Lar	Ā
		_	01	~		10	"			

Berechnungen von pH-Werten

Sehr starke Säuren, extrem starke Säuren

$$pH = -log(c(H_3O^*)) = -log(c_0(HA))$$

Schwache Säuren

$$pH = \frac{1}{2}pK_S - \frac{1}{2}\log(c_0(HA))$$

Starke Basen

$$pOH = -log(c(OH^{-})) = -log(c_0(A^{-}))$$

 $pH = 14 - pOH = 14 + log(co(A^{-}))$

Schwache Basen

pOH =
$$\frac{1}{2}$$
pK_B - $\frac{1}{2}$ log(c₀(A⁻))
pH = 14 - pOH = 14 - $\frac{1}{2}$ pK_B + $\frac{1}{2}$ log(c₀(A⁻))

Pufferlösungen

pH = pK_S + log(
$$\frac{c_{A^{-}}}{c_{HA}}$$
) = pK_S + log($\frac{n_{A^{-}}}{n_{HA}}$)

Indikatoren

Indikator	Forbe der Soure	Forbe der Saure pH-Bereich des	Forbe der Base	PKATIN
		Farbumschlags		
Thymolblau		1,2- 2,8	gelb	1.7
Methylorange		3,0-4,4	gelb-orange	3,4
Bromkresolgrün	gelb	3,8- 5,4	blan	4.7
Methylrot	rot	4,2- 6,2	dlag	5,0
Lackmus	rot	5,0- 8,0	plan	6,5
Bromthymolblau	dlag	9'2 -0'9	plan	7,1
Thymolblau	gelb	8.0 - 9.6	bian	8.9
henolphthalein	farblos	8,2-10,0	purpur	9,4
Thymolphthalein	farblos	9,3-10,5	blau	10.0
Alizarinaelb R	delp	101-121	rot	11.2

Tabelle mit pK_S und pK_B Werten

pK_s	Säure		korr	espondierende Base	рKв
	Perchlorsäure	HClO₄	ClO ₄ -	Perchlorat-Ion	
Pr	lodwasserstoffsäure	HI	I -	lodid-lon	Pro
Vollständige Protonenabgabe	Bromwasserstoff	HBr	Br-	Bromid-Ion	Keine Protonenaufnahme
āndig na bga	Salzsäure	HCl	CI-	Chlorid-Ion	Keine
be	Schwefelsäure	H ₂ SO ₄	HSO₄⁻	Hydrogensulfat-Ion	him.e
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion	
	Oxonium-lon	H₃O+	H₂O	Wasser	
1,42	Oxalsäure	H ₂ C ₂ O ₄	HIC ₂ O ₄ -	Hydrogenoxalat-Ion	12,58
1,92	Hydrogensulfat-lon	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12,08
2,13	Phosphorsäure	H₃PO₄	H ₂ PO ₄ -	Dihydrogenphosphat-lon	11,87
2,22	Hexaaquaeisen(III)-lon	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyeisen(III)-Ion	11,78
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65
3,75	Ameisensäure (Methansäure)	НСООН	HCOO-	Methanoat-Ion (Formiat)	10,25
4,75	Essigsäure (Ethansäure)	CH ₃ COOH	CH ₃ COO-	Ethanoat-Ion (Acetat)	9,25
4,85	Hexaaquaaluminium-lon	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaaquahxdroxyaluminium-lon	9,15
6,52	Kohlensäure	CO ₂ + H ₂ O	HCO ₃ -	Hydrogencarbonat-lon	7,48
6,92	Schwefelwasserstoff	H₂S	HS-	Hydrogensulfid-Ion	7,08
7,00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-lon	H₂PO₄⁻	HPO ₄ 2-	Hydrogenphosphat-lon	6,80
9,25	Ammonium-lon	NH ₄ +	NH ₃	Ammoniak	4,75
9,40	Blausäure (Cyanwasserstoff)	HCN	CN-	Cyanid-lon	4,60
10,40	Hydrogencarbonat-lon	HCO ₃ -	CO ₃ ² -	Carbonat-Ion	3,60
11,62	Wasserstoffperoxid	H ₂ O ₂	HO ₂ -	Hydrogenperoxid-Ion	3,38
12,36	Hydrogenphosphat-lon	HPO ₄ 2-	PO ₄ 3-	Phosphat-Ion	1,64
13,00	Hydrogensulfid-Ion	HS-	S ² -	Sulfid-Ion	1,00
	Wasser	H₂O	OH-	Hydroxid-Ion	
	Ethanol	CH₃CH₂OH	CH₃CH₂O−	Ethanolat-Ion	_
Proto	Methanol	CH₃OH	CH ₃ O-	Methanolat-Ion	Vollständige Protonenaufnahme
Keine Protonen abgabe	Ammoniak	NH ₃	NH ₂ -	Amid-lon	Vollständige tonenaufnah
bga be	Hydroxid-lon	OH-	O ² -	Oxid-lon	dige fnahm
	Wasserstoff	H ₂	H-	Hydrid-Ion	TD.

Standardpotenziale bei 25 ℃

Standard potentiale del 23			
Red	=	Ox + n e ⁻	E⊖/V
Li(s)	\rightleftharpoons	Li ⁺ (aq) + e ⁻	-3,02
K(s)	=	K ⁺ (aq) + e ⁻	-2,92
Ba(s)	=	Ba ²⁺ (aq) + 2 e ⁻	-2,90
Ca(s)	=	Ca ²⁺ (aq) + 2 e ⁻	-2,76
Na(s)	=	Na ⁺ (aq) + e ⁻	-2,71
Mg(s)	\rightleftharpoons	Mg ²⁺ (aq) + 2 e ⁻	-2,38
Al(s)	=	Al3+(aq) + 3 e-	-1,66
$N_2H_4(aq) + 4 OH^-(aq)$	=	$N_2(g) + 4 H_2O(1) + 4 e^{-1}$	-1,16
SO ₃ ²⁻ (aq) + 2 OH ⁻ (aq)	=	$SO_4^{2^-}(aq) + H_2O(1) + 2 e^-$	-0,92
H ₂ (g) + 2 OH ⁻ (aq)	<u></u>	2 H ₂ O(I) + 2 e ⁻	-0,83
Zn(s)	<u></u>	$Zn^{2+}(aq) + 2e^{-}$	-0,76
Fe(s)	<u></u>	Fe ²⁺ (aq) + 2 e ⁻	-0,41
Cd(s)	→	Cd ²⁺ (aq) + 2 e ⁻	-0,40
$Pb(s) + SO_4^{2-}(aq)$	→	PbSO ₄ (s) + 2 e ⁻	-0,36
Ni(s)	=	Ni ²⁺ (aq) + 2 e ⁻	-0,23
$H_2O_2(aq) + 2 OH^-(aq)$	≠	$O_2(g) + 2 H_2O(l) + 2 e^-$ $Agl(s) + e^-$	-0,15 -0,15
$Ag(s) + I^{-}(aq)$	=	Sn ²⁺ (aq) + 2 e ⁻	
Sn(s) Pb(s)	=	Pb ^{2*} (aq) + 2 e ⁻	-0,14
Fe(s)	=	Fe ³⁺ (aq) + 3 e ⁻	-0,13 -0,04
H ₂ (g) + 2 H ₂ O(l)	+	2 H ₃ O*(aq) + 2 e ⁻	-0,04
$Ag(s) + Br^{-}(aq)$	+	AgBr(s) + e ⁻	0,07
$H_2S(g) + 2 H_2O(I)$	=	S(s) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,07
Cu*(aq)	=	S(S) + 2 H3O (aq) + 2 E Cu ²⁺ (aq) + e ⁻	0,14
H ₂ SO ₃ (aq) + 5 H ₂ O(I)	+	$SO_4^{2-}(aq) + 4 H_3O^{+}(aq) + 2 e^{-}$	0,10
Ag(s) + Cl ⁻ (aq)	+	AgCl(s) + e ⁻	0,20
2 Hg(l) + 2 Cl ⁻ (aq)	+	$Hg_2Cl_2(s) + 2 e^-$	0,27
2 Ag(s) + 2 OH"(aq)	+	$Ag_2O(s) + H_2O(l) + 2e^{-l}$	0,34
Cu(s)	≠	Cu ²⁺ (aq) + 2 e ⁻	0,34
4 OH ⁻ (aq)	=	$O_2(g) + 2 H_2O(1) + 4 e^{-}$	0,40
Cl ₂ (g) + 4 OH ⁻ (aq)	=	2 OCIT(aq) + 2 H ₂ O(I) + 2e ⁻	0,42
Cu(s)	=	Cu*(aq) + e	0,52
2 I-(aq)	+	I ₂ (s) + 2 e ⁻	0,54
MnO ₂ (s) + 4 OH"(aq)	-	$MnO_4^-(aq) + 2 H_2O(1) + 3 e^-$	0,59
$H_2O_2(aq) + 2 H_2O(l)$	=	O ₂ (g) + 2 H ₃ O ⁺ (aq) + 2 e ⁻	0,68
Fe ²⁺ (aq)	≓	Fe ³⁺ (aq) + e ⁻	0,77
Ag(s)	=	Ag+(aq) + e-	0,80
2 Hg(I)	=	Hg ₂ ²⁺ (aq) + 2 e ⁻	0,80
Hg(I)	=	Hg ²⁺ (aq) + 2 e ⁻	0,85
NO(g) + 6 H ₂ O(I)	\rightleftharpoons	$NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^-$	0,96
2 Br (aq)	=	Br ₂ (ag) + 2 e	1,07
Pt(s)	=	Pt ²⁺ (aq) + 2 e ⁻	1,20
$I_2(s) + 18 H_2O(l)$	=	2 IO ₃ -(aq) + 12 H ₃ O+(aq) + 10 e-	1,20
$Mn^{2+}(aq) + 6 H_2O(1)$	=	$MnO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,21
6 H ₂ O(I)	=	O ₂ (g) + 4 H ₃ O ⁺ (aq) + 4 e ⁻	1,23
2 Cr3+(aq) + 21 H2O(I)	=	Cr ₂ O ₇ ²⁻ (aq) + 14 H ₃ O ⁴ (aq) + 6 e ⁻	1,33
2 Cl ⁻ (aq)	=	Cl ₂ (g) + 2 e ⁻	1,36
Au(s)	=	Au ³⁺ (aq) + 3 e ⁻	1,42
$Pb^{2+}(aq) + 6 H_2O(I)$	=	$PbO_2(s) + 4 H_3O^+(aq) + 2 e^-$	1,46
Mn ²⁺ (aq) + 12 H ₂ O(I)	=	$MnO_4^-(aq) + 8 H_3O^+(aq) + 5 e^-$	1,49
$MnO_2(s) + 6 H_2O(l)$	=	$MnO_4^-(aq) + 4 H_3O^*(aq) + 3 e^-$	1,68
$PbSO_4(s) + 5 H_2O(l)$	=	PbO ₂ (s) + HSO ₄ -(aq) + 3 H ₃ O*(aq) + 2 e ⁻	1,69
4 H ₂ O(I)	=	$H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^-$	1,78
2 SO ₄ ²⁻ (aq)	=	$S_2O_8^2$ -(aq) + 2 e	2,00
2 F ⁻ (aq)	\rightleftharpoons	F ₂ (g) + 2 e ⁻	2,87

Organische Chemie

Prioritätenliste und Benennung der Verbindungen

Prioritätenliste		
Verbindungsklasse	Vorsilbe	Endung
Carbonsäure	carboxy	säure
Ester		säureester
Aldehyd	formyl	al
Keton	0хо	on
Alkohol	hydroxy	ol
Amin	amino	amin
Alken		en
Halogen	halogen	