EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE										
Date :	18.09.24		Horaire :	14:15 - 16:45	5 [Durée :	150 minutes			
Discipline :	СНІМІ Туре :		écrit	Section(s):	GIG					
		•		•	Numéro du cand	lidat :				

I. Gleichgewichte und Gehaltsangaben von Lösungen (15 P.)

1. Herstellung von Schwefeltrioxid (10 P.)

Schwefeltrioxid ist ein wichtiges Zwischenprodukt des sogenannten Kontaktverfahrens, welches zur Herstellung von konzentrierter Schwefelsäure dient. Es wird durch die folgende Gleichgewichtsreaktion in diesem Verfahren synthetisiert:

$$2 SO_{2(g.)} + O_{2(g.)} \rightleftharpoons 2 SO_{3(g.)} | \Delta H^{\circ} = -198.2 kJ$$

- a) In einem 10 L-Behälter werden 11 mol Schwefeldioxid und 176g Sauerstoff vermischt. Am Ende der Reaktion entstehen 7 mol Schwefeltrioxid. Bestimmen Sie die Gleichgewichtskonstante $K_c!$ (5)
- b) Formulieren Sie das Prinzip von Le Chatelier! (2)
- c) Die Herstellung von Schwefeltrioxid wird in der Industrie bei recht niedriger Temperatur und hohem Druck vollzogen. Erklären Sie, wieso diese Reaktionsbedingungen ausgewählt werden!
 (2)
- d) Beim Kontaktverfahren wird in der Regel Vanadiumpentoxid als Katalysator verwendet. Welchen Einfluss hat dieser Katalysator auf die Gleichgewichtskonstante K_c? Begründen Sie! (1)

2. <u>Veresterung (5 P.)</u>

Methansäureethylester wird häufig als Aromastoff in der Lebensmittelindustrie eingesetzt und entsteht bei der folgenden Reaktion zwischen Ethanol und Methansäure:

 $C_2H_5OH_{(l.)} + HCOOH_{(l.)} \rightleftharpoons HCOOC_2H_5{}_{(l.)} + H_2O_{(l.)} \mid K_c = 3,5 \ bei \ Raumbedingungen$ In 2L einer Lösung befinden sich 2 mol Ethanol und 3 mol Methansäure. Bestimmen Sie die Stoffmengenkonzentration aller Reaktionspartner nach Einstellung des Gleichgewichtes!

II. Säure-Base Reaktionen und Gehaltsangaben von Lösungen (21 P.)

3. Gehaltsangaben (2 P.)

Die handelsübliche, stark konzentrierte, Kalilauge besitzt eine Stoffmengenkonzentration von 13,4 mol/L und eine Dichte von 1,50 g/cm³. Bestimmen sie den Massenanteil an Kaliumhydroxid in dieser Lösung.

4. Titration einer unbekannten Säure (9 P.)

Im Labor steht ein Erlenmeyerkolben mit einer sauren Lösung, wo die Aufschrift leider verwischt wurde. Um diese unbekannte schwache Säure (HA) identifizieren zu können, wurden 20mL dieser Säure mit 0,2 mol/L-Natronlauge titriert. Der Äquivalenzpunkt wurde nach Zugabe von 28mL Natronlauge erreicht. Der pH-Wert nach Zugabe von 14mL Natronlauge beträgt 9,40.

- a) Identifizieren Sie die schwache Säure HA und begründen Sie mit Hilfe der Henderson-Hasselbalch-Gleichung. (2)
- b) Stellen Sie die Reaktionsgleichung dieser Titration auf. (1)
- c) Berechnen Sie die Stoffmengenkonzentration und die Massenkonzentration der Säurelösung vor Beginn der Titration. (3)
- d) Berechnen Sie den pH-Wert der Säurelösung vor Beginn der Titration. (1)
- e) Bestimmen und begründen Sie den Charakter der Lösung am Äquivalenzpunkt! Geben Sie die dazu passende Protolysegleichung an! (2)

5. Puffersystem im Blut (10 P.)

Um die Funktion der Organe und Proteine des menschlichen Körpers garantieren zu können, ist es notwendig den pH-Wert von Blut bei rund 7,40 konstant zu halten. Deshalb besteht Blut aus einem komplexen Puffersystem, wo Kohlensäure und Natriumhydrogencarbonat eine Hauptrolle spielen. In dieser Aufgabe wird zur Vereinfachung das Blut als Kohlensäure/Natriumhydrogencarbonat Puffersystem betrachtet.

- a) Definieren Sie den Begriff "Puffersystem" und beschreiben Sie die Eigenschaften einer solchen Lösung nach Zugabe von Oxonium oder Hydroxid-Ionen! (2)
- b) Der Mensch enthält im Durchschnitt 5 Liter Blut, bei einer Stoffmengenkonzentration an Natriumhydrogencarbonat von $30 \cdot 10^{-3}$ mol/L. Bestimmen Sie die Stoffmengenkonzentration, sowie auch die Masse an Kohlensäure, die das (vereinfachte) Blut enthalten muss, um den pH-Wert von 7,40 einhalten zu können. (4,5)
- c) Der Normalbereich des pH-Wertes von Blut liegt zwischen 7,35-7,45. Ein pH-Wert unter 7, sowie auch ein pH-Wert über 7,8 kann tödlich enden.

 Durch einen Laborunfall gelangen nun 5mL Salzsäure (c = 2 mol/L) ins Blut eines Forschers.

 Bestimmen Sie den pH-Wert des Blutes nach diesem Unfall und erläutern Sie ob der Forscher diesen Unfall überleben könnte (von den Verätzungen mal abgesehen). (3,5)

III. Organische Chemie (24 P.)

6. Wasserlöslichkeit organischer Stoffe (3 P.)

- a) Geben Sie für die folgenden Stoffe jeweils die Skelettformel an (1,5).
 - i) 3,3-Diethylpentan
 - ii) 2-Methylbutansäure
 - iii) 4-Ethyl-2-methylhexan-3-on
- b) Welcher der unter a) genannten Stoffen besitzt die größte Löslichkeit im Wasser? Begründen Sie mithilfe der zwischenmolekularen Kräfte! (1,5)

7. Herstellung von 1-Chlor-2-methylpropan (11 P.)

1-Chlor-2-methylpropan ist eine farblose Flüssigkeit mit starkem Geruch, die oft als Zwischenprodukt für weitere Synthesen benutzt wurde. Dieses Halogenalkan kann auf verschiedene Art und Weisen hergestellt werden.

- a) In der Reaktion A wird 1-Chlor-2-methylpropan aus einem Alkan und einem Halogen hergestellt.
 - i. Wie heißt diese Art von Reaktion? Unter welchen Bedingungen findet sie statt? (1)
 - ii. Geben Sie den Reaktionsmechanismus dieser Reaktion mit Halbstrukturformeln an und benennen Sie alle vorkommenden Teilchen. (6)
- b) In der Reaktion B wird dieses Produkt (1-Chlor-2-methylpropan) aus einem Alken hergestellt. Benennen Sie die Edukte und formulieren Sie die Reaktionsgleichung mit Halbstrukturformeln (ohne Mechanismus) (1,5)
- c) In der Reaktion C wird dieses Produkt (1-Chlor-2-methylpropan) aus einem Alkohol hergestellt. Benennen Sie die Edukte und formulieren Sie die Reaktionsgleichung mit Halbstrukturformeln (ohne Mechanismus) (1,5)
- d) Erklären Sie, wieso die Reaktion C für die Herstellung von 1-Chlor-2-methylpropan besser geeignet ist als die Reaktion B! (1)

8. Oxidation von Alkoholen (10 P.)

a) Benennen Sie die beiden hier abgebildeten Alkohole. (1)

$$\mathsf{CH}_{\overline{3}}^{-}\mathsf{CH}_{\overline{2}}^{-}\mathsf{CH}_{\overline{2}}^{-}\mathsf{CH}_{\overline{2}}^{-}\mathsf{OH}$$

- b) Definieren Sie den Begriff "Isomere". Sind die oben abgebildeten Alkohole Isomere? Begründen Sie! (2)
- c) Einer der Alkohole hat eine Siedetemperatur von 82°C, während der andere eine Siedetemperatur von 117,7°C besitzt. Ordnen Sie diese Siedetemperaturen dem passenden Alkohol zu, indem Sie Ihre Überlegung ausführlich erklären. (2)
- d) Kommen beide Alkohole in Kontakt mit heißem Kupfer(II)-oxid, so entsteht bei einem der Alkohole eine neue, stechend riechende, Substanz, wohingegen beim anderen Alkohol gar keine Veränderung erkennbar ist.
 - Erklären Sie, wieso nur einer der beiden Stoffe reagiert und geben Sie die entsprechende Reaktionsgleichung mit Halbstrukturformeln an. (2)
- e) Wird das organische Produkt, das unter d) entsteht, mit dem Tollens-Reagenz versetzt, bemerkt man eine silbrige Schicht auf der Glaswand des Reagenzglases. Geben Sie die Teilgleichungen für die Reduktion, die Oxidation sowie die Gesamtgleichung mit Hilfe von Halbstrukturformeln an. Vervollständigen Sie diese Gleichungen mit den relevanten Oxidationszahlen. (3)

pKs	Säure		Korrespondierende Base				
Vollständige Protonenabgab	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion	u		
	Iodwasserstoffsäure	НІ	I-	Iodid-Ion			
	Bromwasserstoffsäure	HBr	Br ⁻	Bromid-Ion	Keine Protonenaufnahm		
	Salzsäure	HCl	Cl-	Chlorid-Ion			
	Schwefelsäure	H ₂ SO ₄	HSO ₄ ⁻	Hydrogensulfat-Ion			
	Oxonium-Ion	$H_3O^+ (H^+ + H_2O)$	H ₂ O	Wasser			
	Salpetersäure	HNO ₃	NO ₃ ⁻	Nitrat-Ion			
1.88	Schwefelige Säure	H ₂ SO ₃	HSO ₃ ⁻	Hydrogensulfit-Ion	12.12		
1.92	Hydrogensulfat-Ion	HSO ₄ ⁻	SO ₄ ²⁻	Sulfat-Ion	12.08		
2.13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11.87		
2.22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11.78		
3.14	Flusssäure (Fluorwasserstoffsäure)	HF	F ⁻	Fluorid-Ion	10.86		
3.35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10.65		
3.75	Ameisensäure (Methansäure)	НСООН	HCOO-	Formiat-Ion (Methanoat-Ion)	10.25		
4.75	Essigsäure (Ethansäure)	CH₃COOH	CH ₃ COO ⁻	Acetat-Ion (Ethanoat-Ion)	9.25		
4.85	Hexaqua-Aluminium-Ion	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9.15		
6.52	Kohlensäure	H ₂ CO ₃ / H ₂ O + CO ₂	HCO ₃ ⁻	Hydrogencarbonat-Ion	7.48		
6.92	Schwefelwasserstoff Säure	H ₂ S	HS-	Hydrogensulfid-Ion	7.08		
7.00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7.00		
7.20	Dihydrogenphosphat-Ion	$\mathrm{H}_{2}\mathrm{PO}_{4}^{-}$	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6.80		
9.25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4.75		
9.40	Blausäure (Cyanwasserstoff Säure)	HCN	CN-	Cyanid-Ion	4.60		
9.60	Hexaqua-Zink(II)-Ion [Zn(H ₂ O) ₆] ²⁺		[Zn(OH)(H ₂ O) ₅] ⁺	Pentaqua-hydroxo-Zink(II)-Ion	4.40		
10.40	Hydrogencarbonat-Ion HCO ₃ -		CO ₃ ²⁻	Carbonat-Ion	3.60		
12.36	Hydrogenphosphat-Ion HPO ₄ ²⁻		PO ₄ ³⁻	Phosphat-Ion	1.64		
13.00	Hydrogensulfid-Ion HS-		S ²⁻	Sulfid-Ion	1.00		
e de	Wasser	H ₂ O	OH-	Hydroxid-Ion	dige n- ne		
Keine Protonen- abgabe	Methanol	СН3ОН	CH ₃ O ⁻	Methanolat-Ion	Vollständige Protonen- aufnahme		
Pro at	Ethanol	CH ₃ CH ₂ OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	Vol. Pre		

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base			
Thymolblau	rot	1,2 - 2,8	gelb			
Methylorange	rot	3,0 - 4,4	gelb-orange			
Bromkresolgrün	gelb	3,8 - 5,4	blau			
Methylrot	rot	4,2 - 6,2	gelb			
Lackmus	rot	5,0 - 8,0	blau			
Bromthymolblau	gelb	6,0 - 7,6	blau			
Thymolblau	gelb	8,0 - 9,6	blau			
Phenolphthalein	farblos	8,2 - 10,0	purpur			
Thymolphthalein	farblos	9,3 - 10,5	blau			
Alizaringelb R	gelb	10,1 - 12,1	rot			

Haupt - Das Periodensystem der Elemente

|₈₉ Ac |₉₀ Th |₉₁ Pa |

Actinoide

gruppen

	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1	1,0 1 H																	^{4,0} ₂ He	1
2	6,9 3 Li	^{9,0} ⁴ Be	e Nebengruppen										10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 9 F	^{20,2} ₁₀ Ne	2
3	^{23,0} 11 N a	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	^{28,1} ₁₄ Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 A r	3
4	39,1 19 K	^{40,1} ₂₀ Ca	45,0 21 S C	47,9 22 T i	50,9 23 V	^{52,0} ₂₄ Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 Ni	63,5 29 Cu	65,4 30 Zn	^{69,7} 31 G a	^{72,6} ₃₂ Ge	^{74,9} ₃₃ As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 K r	4
5	85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 ₅₃	131,3 54 Xe	5
6	132,9 55 Cs	137,3 56 Ba	57 bis 71 La-L u	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 r	195,1 78 Pt	197,0 79 Au	200,6 80 Hg	204,4 81 TI	^{207,2} ₈₂ Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn	6
7	223 87 Fr	226 88 Ra	89 bis 103 AC-Lr		262 105 Db	263 106 Sg	²⁶² ₁₀₇ Bh	²⁶⁵ ₁₀₈ Hs	268 109 Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
	Lanthanoide			138,9 57 La	^{140,1} ₅₈ Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	

 $|_{93}\,\text{Np}\,|_{94}\,\text{Pu}\,|_{95}\,\text{Am}|_{96}\,\text{Cm}|_{97}\,\text{Bk}\,|_{98}\,\text{Cf}\,|_{99}\,\text{Es}\,|_{100}\,\text{Fm}|_{101}\,\text{Md}|_{102}\,\text{No}|_{103}\,\text{Lr}$