EXAMEN DE FIN D'ÉTUDES SECONDAIRES – Sessions 2024 QUESTIONNAIRE										
Date :	03.06.24		Horaire :	08:15 - 10:45	5	Durée :	150 minutes			
Discipline :	СНІМІ Туре :		écrit	Section(s):		GIG				
		•			Numér o du ca r	idi dat :				

1 Gleichgewichte und Gehaltsangaben von Lösungen (5 + 8 = 13 Punkte)

1.1 Die Wasser-Gas-Shift-Reaktion (WGSR) (0,5+1+2+1,5=5P)

Die Wasser-Gas-Shift-Reaktion (WGSR) wird häufig in der Industrie eingesetzt, insbesondere in der Wasserstoffproduktion und bei der Reduzierung von CO₂-Emissionen. In Verbindung mit anderen Prozessen kann sie dazu beitragen, Wasserstoff als saubere Energiequelle zu gewinnen. Das Gleichgewicht spielt eine entscheidende Rolle bei der Bestimmung der optimalen Bedingungen, um die gewünschte Menge an Wasserstoff zu produzieren.

Die Gleichung für diese Reaktion lautet: $H_2O_{(g)} + CO_{(g)} \rightleftharpoons H_{2(g)} + CO_{2(g)}$ | exotherm Die Gleichgewichtskonstante (K_c) für diese Reaktion beträgt 3,0 bei einer bestimmten Temperatur.

- 1.1.1 Formulieren Sie das Massenwirkungsgesetz für die Wasser-Gas-Shift-Reaktion (0,5P)
- 1.1.2 In einem Industriereaktor werden zu Beginn der Reaktion 2 mol CO, 1 mol H_2O , 3 mol CO_2 und 2 mol H_2 in einem 10-Liter-Reaktor eingeschlossen. Berechnen Sie K_c und bestimmen Sie, ob das System im Gleichgewicht ist oder ob es einen Überschuss an Edukten oder Produkten gibt. (1P)
- 1.1.3 Formulieren Sie das Prinzip von Le Chatelier! (2P)
- **1.1.4** Welchen Einfluss hat eine Temperaturerhöhung auf die Position des Gleichgewichts und die Ausbeute von Wasserstoff? Begründen Sie ihre Antwort. (1,5P)

1.2 Veresterung (4+1+1+2=8P)

Die Esterbildung ist eine wichtige chemische Reaktion, die oft in der Herstellung von Duftstoffen, Aromen und Kunststoffen verwendet wird.

(2mol) Essigsäure (CH₃COOH) reagieren mit (5mol) Ethanol (C₂H₅OH) in einer umkehrbaren Reaktion zu Essigsäureethylesther (CH₃COOC₂H₅) und Wasser. Alle Stoffe sind flüssig.

- **1.2.1** Berechnen Sie die Stoffmengen aller beteiligten Stoffe im Gleichgewicht ($K_C = 4$). (4P)
- **1.2.2** Erklären Sie, wie sich K_c bei einer Verringerung des Druckes verändert. (1P)
- 1.2.3 Erklären Sie, wie sich K_C durch den Einsatz eines Katalysators verändert. (1P)
- **1.2.4** Erläutern Sie, wie sich die Ausbeute an Ester erhöhen lässt, ohne die Konzentrationen der Edukte zu erhöhen. (2P)

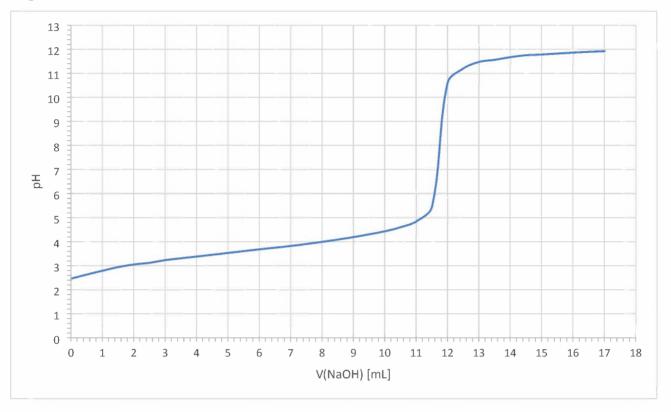
2 Säure-Base-Reaktionen und Gehaltsangaben von Lösungen (9 + 6 + 7 = 22 Punkte)

2.1 Natriumformiat (3,5+1,5+2,5+1,5=9)

Durch Zugabe von Natriumformiat in Wasser entstehen 320 mL einer Lösung der Massenkonzentration β = 47,6 g·L⁻¹.

- 2.1.1 Berechnen Sie den pH-Wert der Natriumformiat-Lösung . (3,5P)
- **2.1.2** Berechnen Sie die Stoffmengenkonzentration der OH⁻-Ionen in dieser Natriumformiat-Lösung. (1,5P)
- **2.1.3** Berechnen Sie die Konzentration einer Natriumformiat-Lösung mit pH = 8,2. (2,5P)
- **2.1.4** Auf welches Volumen (in L) müssen die 320 mL der ursprünglichen Natriumformiat-Lösung verdünnt werden, um eine Lösung mit pH = 8,2 zu erhalten? (1,5P)

2.2 Puffersystem (1,5+1+3,5=6)


Eine Pufferlösung enthält 0,75 mol Natriumdihydrogenphosphat und 0,75 mol Natriumhydrogenphosphat.

Dieser Lösung werden 0,25 mol Oxonium-Ionen zugesetzt.

- 2.2.1 Schreiben Sie die Gleichungen vom Lösen der Salze im Wasser. Geben Sie an, welche Teilchen im Puffer als Säure HA bzw. als Base A- wirken. (1,5P)
- **2.2.2** Formulieren Sie die Reaktion, die abläuft, wenn zur Pufferlösung Oxonium-Ionen zugesetzt werden. (1P)
- **2.2.3** Wie stark verändert sich der pH-Wert nach der Zugabe von den Oxonium-Ionen? Berechnen Sie die pH-Änderung. (3,5P)

2.3 Titration (2+2+2+1=7)

25 mL einer unbekannten Säure wurden mit Natronlauge (NaOH, 0,2M) titriert. Dabei wurde folgende Titrationskurve erhalten.

- **2.3.1** Bestimmen Sie graphisch den Äquivalenzpunkt und den Halbäquivalenzpunkt (Koordinaten angeben). (2P)
- 2.3.2 Um welche Säure handelt es sich? Begründen Sie Ihre Vorgehensweise ausführlich. (2P)
- 2.3.3 Berechnen Sie die Stoffmengenkonzentration und den pH-Wert der Säure vor der Titration.(2P)
- 2.3.4 Bestimmen Sie anhand der vorhandenen Ionen den Charakter der Lösung am Äquivalenzpunkt. (1P)

3 Organische Chemie (6 + 10 + 9 = 25 Punkte)

3.1 Hexan (3+1+2=6P)

- **3.1.1** Geben Sie die Skelettformeln für drei verzweigte Isomere des Hexans an und benennen Sie diese nach den IUPAC-Regeln. (3P)
- **3.1.2** Formulieren Sie mittels Strukturformeln die Gesamtgleichung für die Reaktion von Hexan mit Chlor (nur Monosubstitution). Geben Sie die Namen der Reaktionsprodukte an. (1P)
- **3.1.3** Unter welchen Bedingungen läuft diese Reaktion ab? Erklären Sie wieso diese Bedingungen erforderlich für diese Reaktion sind und geben Sie den entsprechenden Schritt im Reaktionsmechanismus an. (2P)

3.2 Alkohole $C_4H_{10}O$ (4+2+4=10P)

Vier Alkanole mit der Summenformel $C_4H_{10}O$ werden untersucht und zunächst mit den Buchstaben A, B, C und D bezeichnet. Alle Alkanole werden mit heißem Kupfer(II)-oxid in Kontakt gebracht. D reagiert nicht mit Kupfer(II)-oxid. Aus A und B erhält man zwei verschiedene Aldehyde. Aus C erhält man ein Alkanon. Das Alkanol A siedet bei 118°C, Alkanol B bei 108°C, Alkanol C bei 99°C und Alkanol D bei 83°C.

- **3.2.1** Schreiben Sie Halbstrukturformel von den vier Alkoholen und ordnen Sie ihnen die Buchstaben A, B, C und D zu. Begründen Sie die Zuordnung für jedes Isomer. (4P)
- **3.2.2** Alkanol A reagiert mit Natrium. Formulieren Sie die Reaktionsgleichung mit Halbstrukturformeln und benennen Sie alle Produkte. (2P)
- **3.2.3** Formulieren Sie eine Reaktionsgleichung mit Halbstrukturformeln für die Reaktion des Alkanols C mit Kupfer(II)-oxid und zeigen Sie anhand der Oxidationszahlen, dass es sich um eine Redoxreaktion handelt. Benennen Sie alle Stoffe. (4P)

3.3 1-Chlor-2-methylpropan (4+3,5+1,5=9P)

1-Chlor-2-methylpropan soll im Labor herstellen werden. Dieser Stoff kann über zwei verschiedene Synthesen hergestellt werden:

- durch Substitution aus einem entsprechenden Alkohol.
- durch Addition auf ein geeignetes Alken.

- **3.3.1** Formulieren Sie für beide Methoden die Gesamtgleichung mit Halbstrukturformeln. Geben Sie jeweils die Namen der Ausgangsstoffe an. (4P)
- **3.3.2** Geben Sie für die Addition den vollständigen Reaktionsmechanismus an. Geben Sie die Namen der Reaktionsprodukte an. (3,5P)
- **3.3.3** Erklären Sie, warum der Syntheseweg über die Substitution sinnvoller ist als der Syntheseweg über die Addition. (1,5P)

pK _S	Säure		Korrespondierende Base					
Vollständige Protonenabgabe	Perchlorsäure	HClO ₄	ClO ₄ -	Perchlorat-Ion	e e			
	Iodwasserstoffsäure	НІ	I-	Iodid-Ion				
	Bromwasserstoffsäure	HBr	Br ⁻	Bromid-Ion	Keine Protonenaufnahme			
	Salzsäure	HCl	Cl-	Chlorid-Ion				
	Schwefelsäure	H ₂ SO ₄	HSO ₄ -	Hydrogensulfat-Ion	k otone			
	Oxonium-Ion	$H_3O^+ (H^+ + H_2O)$	H ₂ O	Wasser	P.			
	Salpetersäure	HNO ₃	NO ₃ -	Nitrat-Ion				
1.88	Schwefelige Säure	H ₂ SO ₃	HSO ₃ -	Hydrogensulfit-Ion	12.12			
1.92	Hydrogensulfat-Ion	HSO ₄ -	SO ₄ ²⁻	Sulfat-Ion	12.08			
2.13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ -	Dihydrogenphosphat-Ion	11.87			
2.22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11.78			
3.14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10.86			
3.35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10.65			
3.75	Ameisensäure (Methansäure)	НСООН	HCOO-	Formiat-Ion (Methanoat-Ion)	10.25			
4.75	Essigsäure (Ethansäure)	CH ₃ COOH	CH ₃ COO-	Acetat-Ion (Ethanoat-Ion)	9.25			
4.85	Hexaqua-Aluminium-Ion	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9.15			
6.52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃ -	Hydrogencarbonat-Ion	7.48			
6.92	Schwefelwasserstoff Säure	H ₂ S	HS-	Hydrogensulfid-Ion	7.08			
7.00	Hydrogensulfit-Ion	HSO ₃ -	SO ₃ ²⁻	Sulfit-Ion	7.00			
7.20	Dihydrogenphosphat-Ion	$\mathrm{H_2PO_4}^-$	HPO ₄ ²⁻	Hydrogenphosphat-Ion	6.80			
9.25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4.75			
9.40	Blausäure (Cyanwasserstoff Säure)	HCN	CN-	Cyanid-Ion	4.60			
9.60	Hexaqua-Zink(II)-Ion	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H ₂ O) ₅] ⁺	Pentaqua-hydroxo-Zink(II)-Ion	4.40			
10.40	Hydrogencarbonat-Ion	HCO ₃ -	CO ₃ ²⁻	Carbonat-Ion	3.60			
12.36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ ³⁻	Phosphat-Ion	1.64			
13.00	Hydrogensulfid-Ion	HS-	S ²⁻	Sulfid-Ion	1.00			
Keine Protonen- abgabe	Wasser	H ₂ O	OH-	Hydroxid-Ion	dige - e			
	Methanol	CH₃OH	CH ₃ O-	Methanolat-Ion	Vollständige Protonen- aufnahme			
	Ethanol	CH₃CH₂OH	CH ₃ CH ₂ O ⁻	Ethanolat-Ion	Vol Prot aufr			

Indikator	Farbe der Säure	pH-Bereich desFarbumschlags	Farbe der Base			
Thymolblau	rot	1,2 - 2,8	gelb			
Methylorange	rot	3,0 - 4,4	gelb-orange			
Bromkresolgrün	gelb	3,8 - 5,4	blau			
Methylrot	rot	4,2 - 6,2	gelb			
Lackmus	rot	5,0 - 8,0	blau			
Bromthymolblau	gelb	6,0 - 7,6	blau			
Thymolblau	gelb	8,0 - 9,6	blau			
Phenolphthalein	farblos	8,2 - 10,0	purpur			
Thymolphthalein	farblos	9,3 - 10,5	blau			
Alizaringelb R	gelb	10,1 - 12,1	rot			

Das Periodensystem der Elemente

gruppen

	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1	1,0 1 H		1															4,0 2 He	1
2	6,9 3 Li	^{9,0} ₄ Be		Nebengruppen									10,8 5 B	12,0 6 C	14,0 7 N	16,0 8 O	19,0 9 F	^{20,2} ₁₀ Ne	2
3	23,0 11 N a	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	^{28,1} ₁₄ Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 Ar	3
4	39,1 19 K	^{40,1} ₂₀ Ca	^{45,0} 21 SC	^{47,9} 22 Ti	50,9 23 V	^{52,0} ₂₄ Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 Ni	63,5 29 Cu	65,4 30 Zn	^{69,7} 31 Ga	^{72,6} 32 Ge	^{74,9} ₃₃ As	^{79,0} ₃₄ Se	^{79,9} ₃₅ Br	83,8 36 Kr	4
5	85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 ₅₃	131,3 54 Xe	5
6	132,9 55 Cs	137,3 56 Ba	57 bis 71 La-Lu	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 r	195,1 78 Pt	197,0 79 Au	^{200,6} 80 Hg	204,4 81 TI	^{207,2} ₈₂ Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn	6
7	223 87 Fr	226 88 Ra	89 bis 103 Ac-Lr	261 104 R f	262 105 Db	²⁶³ ₁₀₆ Sg	²⁶² ₁₀₇ Bh	265 108 Hs	268 109 Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
	Lanthanoide			138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	
	Actinoide		de	227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 101 Md	259 ₁₀₂ No	260 ₁₀₃ Lr	