

1. Massenwirkungsgesetz (10 + 5 + 2 = 17 Punkte)

1.1 Veresterung Essigsäureethylester (10)

3 mol Essigsäure (CH_3COOH) reagieren mit 3 mol Ethanol (C_2H_5OH) in einer umkehrbaren Reaktion zu Essigsäureethylester ($CH_3COOC_2H_5$) und Wasser. Berechnen Sie die Stoffmengen aller beteiligten Stoffe im Gleichgewicht. Die Gleichgewichtskonstante beträgt $K_c = 4$.

1.2 Gleichgewichtsverlagerung (3+1+1)

Die Reaktion $CH_3OH_{(g)} + HCl_{(g)} \rightleftharpoons CH_3Cl_{(g)} + H_2O_{(g)}$ verläuft exotherm.

- 1.2.1 Begründen Sie, wie das Gleichgewicht verlagert wird, wenn:
 - 1.2.1.1 Die Temperatur erhöht wird.
 - 1.2.1.2 H₂O_(g) dem Reaktionsgemisch entzogen wird.
 - 1.2.1.3 Der Druck verringert wird.
- 1.2.2 Formuliere das Massenwirkungsgesetz über die Gleichgewichtskonstante Kc.
- 1.2.3 Wie verändert sich Kc, wenn der Druck erhöht wird?

1.3 Eisen(III)-thiocyanat (2)

Betrachten Sie das folgende Gleichgewicht: $Fe^{3+} + SCN^{-} \rightleftharpoons [Fe(SCN)]^{2+}$

Je höher die Konzentration der $[Fe(SCN)]^{2+}$ -Ionen, umso intensiver rot wird die Lösung. Senkt man die Temperatur, so erhöht sich die Intensität der Farbe. Ziehen Sie eine Schlussfolgerung aus dieser Beobachtung.

2. Säure-Base-Reaktionen (8 + 6 + 8 = 22 Punkte)

2.1 Buttersäure (8)

Eine Lösung des Butanolat-Anions der Konzentration $c_0(Bu^-) = 0.1 \text{ mol} \cdot L^{-1}$ weist den pH-Wert pH = 8,91 auf. Wie groß ist der pK_S-Wert der korrespondierenden Buttersäure? (Geben Sie alle Näherungen an.)

2.2 Puffersystem (3+3)

500 mL Lösung enthalten 2,80 g gelöstes Natriumhydrogensulfat und 2,53 g gelöstes Natriumsulfat.

- 2.2.1 Berechnen Sie den pH-Wert dieser Lösung.
- 2.2.2 Erklären Sie anhand der entsprechenden Protolysegleichung, wieso die Zugabe von 2,5 mL Natriumhydroxid-Lösung ($c_0 = 1 \text{ mol} \cdot \text{L}^{-1}$) den pH-Wert nur geringfügig verändert. Berechnen Sie die pH-Wert-Änderung nach der Zugabe von Natriumhydroxid.

2.3 Titration (1+1+2+2+2)

25 mL einer Ameisensäure-Lösung werden mit Natronlauge der Stoffmengenkonzentration $c(NaOH) = 1 \text{ mol} \cdot L^{-1}$ titriert. Der Äquivalenzpunkt wird nach Zugabe von 16 mL Natronlauge erreicht.

- 2.3.1 Berechnen Sie den pH-Wert der Maßlösung.
- 2.3.2 Formulieren Sie die Reaktionsgleichung der Titration.
- 2.3.3 Bestimmen Sie den pH-Wert am Halbäquivalenzpunkt. Erklären Sie, warum die Probelösung am Halbäquivalenzpunkt eine Pufferlösung ist.
- 2.3.4 Berechnen Sie die Stoffmengenkonzentration der Ameisensäure-Lösung vor der Titration.
- 2.3.5 Erklären Sie, warum die Probelösung am Äquivalenzpunkt basisch ist.

3. Elektrochemie (5 + 6 + 6 + 4 = 21 Punkte)

3.1 Galvanisches Element (2+1+1+1)

Ein galvanisches Element wird aus den folgenden Halbelementen hergestellt:

Ein Zinkblech wird in eine Zink(II)-sulfatlösung (c = 1 mol/L) eingetaucht, Kupferblech wird in eine Kupfer(II)-sulfatlösung (c = 1 mol/L) eingetaucht.

- 3.1.1 Formuliere die Gleichungen an der Anode und an der Kathode. Benenne die Oxidation und die Reduktion.
- 3.1.2 Notiere die symbolische Schreibweise des gebildeten galvanischen Elementes.
- 3.1.3 Berechne die Spannung (im Standardzustand).
- 3.1.4 Wie nennt man dieses galvanische Element?

3.2 Vorhersage einer möglichen Reaktion (2+2+2)

Man führt folgende Versuche durch:

- 3.2.1 Eisenblech wird in eine wässrige Lösung von Nickel(II)-sulfat getaucht.
- 3.2.2 Wasserstoff wird in eine wässrige Lösung von Natriumiodid geleitet.
- 3.2.3 Zinkpulver wird zu Salzsäure gegeben

Bestimme mit Hilfe der elektrochemischen Spannungsreihe, welche Reaktionen ablaufen können, und begründe deine Antwort. Formuliere die Gleichungen für die Oxidation und die Reduktion sowie die Redoxreaktion.

3.3 Elektrolyse (4+2)

Man führt die Elektrolyse einer wässrigen Kupfer(II)-bromidlösung durch.

- 3.3.1 Formuliere die Oxidation und die Reduktion sowie die Gesamtgleichung. Geben Sie dabei ebenfalls die Polung der Elektroden an und benennen Sie diese.
- 3.3.2 Berechnen Sie die benötigte Zersetzungsspannung.

3.4 Korrosionsschutz von Eisen (2+2)

Eisen kann durch einen Zinküberzug und durch einen Zinnüberzug gegen Korrosion geschützt werden.

- 3.4.1 Auf welchem Prinzip beruht jeweils die Schutzwirkung?
- 3.4.2 Welche Risiken birgt eine dieser Schutzmaßnahmen?

Examen de fin d'études secondaires – 2024

Haupt -		Das Periodensystem der Elemente							gruppen								
1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIII
1,0 1 H																	4,0 2 He
6,9	^{9,0}	Nebengruppen								10,8	12,0	14,0	16,0	19,0	20,2		
3 Li	₄ Be									5 B	6 C	7 N	8 O	₉ F	10 N €		
23,0 11 Na	24,3 12 Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	^{28,1} ₁₄ Si	31,0 15 P	32,1 16 S	35,5 17 CI	39,9 18 A I
39,1	^{40,1}	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	^{69,7}	^{72,6}	74,9	^{79,0}	^{79,9}	83,8
19 K	₂₀ Ca	21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 G a	₃₂ Ge	33 As	₃₄ Se	₃₅ Br	36 K I
85,5	87,6	88,9	91,2	92,9	95,9	99	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
37 R b	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 ln	50 Sn	51 Sb	52 Te	53	54 X 6
132,9	137,3	57 bis 71	178,5	180,9	183,8	186,2	190,2	192,2	195,1	197,0	^{200,6}	204,4	^{207,2}	209,0	209	210	222
55 Cs	56 Ba	La-Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	₈₀ Hg	81 TI	₈₂ Pb	83 Bi	84 Po	85 At	86 RI
223 87 Fr	226 88 Ra	89 bis 103 Ac-Lr	261 104 Rf	262 105 D b	263 106 Sg	262 107 Bh	265 108 Hs	268 109 Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uu
												'					
Lanthanoide			138,9	140,1	140,9	144,2	147	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0	175,0
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 L I
Actinoide			227	232	231	238	237	244	243	247	247	251	252	257	258	259	260
			89 Ac	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 L

Red	Ox + ze	Standardpotential E ⁰ (in Volt)
2 F	F ₂ + 2 e	+ 2,87
	52082 + 2 e	+ 2,00
4 H ₂ O	H2O2 + 2 H3O" + 2 e	+ 1,78
PbSO ₄ + 5 H ₂ O	PbO2 + HSO4 + 3 H3O+ 2 e	+ 1,69
	MnO4" + 4 H30" + 3 e"	+ 1,68
Mn ²⁺ + 12 H ₂ O	MnO4" + 8 H3O" + 5 e"	+ 1,49
	PbO2 + 4 H30 + 2 e	+ 1,46
	Au3+ + 3 e	+ 1,42
	Cl2 + 2 e	+ 1,36
2 Cr3+ + 21 H2O	Cr2O72- + 14 H3O+ 6 e	+ 1,33
	O2 + 4 H3O* + 4 e	+ 1,23
	MnO2 + 4 H30" + 2 e	+ 1,21
	Pt2+ + 2 e-	+ 1,20
	2 IO3 + 12 H3O + 10 e	+ 1,20
	Br ₂ + 2 e	+ 1,07
	NO3 + 4 H30' + 3 e	+ 0,96
	Hg ²⁺ + 2 e	+ 0.85
	Ag° + e	+ 0,80
2 Ha	$Hg_2^{2^*} + 2e^-$	+ 0,80
	Fe ³⁺ + e ⁻	+ 0,77
	O2 + 2 H3O+ + 2 e-	+ 0,68
	MnO4" + 2 H2O + 3 e"	+ 0,59
	I ₂ + 2e	+ 0,54
	Cu° + e-	
		+ 0,52
	O ₂ + 2 H ₂ O + 4 e ⁻	+ 0,40
	Ag20 + H20 + 2 e	+ 0,34
	Cu ²⁺ + 2 e	+ 0,34
	Hg ₂ Cl ₂ + 2 e ⁻	+ 0,27
	AgCl + e ⁻ SO ₄ ²⁻ + 4 H ₃ O ⁺ + 2 e ⁻	+ 0,22
	Cu2+ + 4 M3U + 2 e	+ 0,20
		+ 0,16
	5 + 2 H ₃ O* + 2 e	+ 0,14
	AgBr + e	+ 0,07
	2 H ₃ O* + 2 e*	0
	Fe ³⁺ + 3 e ⁻	-0,04
	Pb ²⁺ + 2 e ⁻	-0,13
	5n ²⁺ + 2 e ⁻	-0,14
	O2 + 2 H2O + 2e	-0,15
Ag + I	AgI + e	-0,15
	Ni ²⁺ + 2 e	-0,23
	Pb5O4 + 2 e	-0,36
Cd	Cd2+ + 2 e	-0,40
	Fe ²⁺ + 2 e	-0,41
	Zn ²⁺ + 2 e ⁻	-0,76
	2 H ₂ O + 2 e	-0,83
	5042- + H2O + 2 e	-0,92
	N2 + 4 H2O + 4 e	-1,16
	Al3+ + 3 e-	-1,66
Mg	Mg ²⁺ + 2 e ⁻	-2,38
	Na ⁺ + e ⁻	-2,71
	Ca ²⁺ + 2 e ⁻	-2,76
Ba	Ba ² * + 2 e	-2,90
K	K+ + e	-2,92
1.6	Li + e	-3,02

pK_S	Säure		Korrespondierende Base				
	Perchlorsäure	HClO ₄	CIO ₄	Perchlorat-Ion			
Vollständige Protonenabgabe	Iodwasserstoffsäure	ні	r	Iodid-Ion	Keine Protonenaufnahme		
	Bromwasserstoffsäure	НВг	Br ⁻	Bromid-Ion			
	Salzsäure	HCI	CI ⁻	Chlorid-Ion			
	Schwefelsäure	H ₂ SO ₄	HSO ₄	Hydrogensulfat-Ion			
	Oxonium-Ion	H ₃ O ⁺	H ₂ O	Wasser			
	Salpetersäure	HNO ₃	NO ₃	Nitrat-Ion			
1,92	Hydrogensulfat-lon	HSO ₄	SO ₄ ²⁻	Sulfat-Ion	12,08		
2,13	Phosphorsäure	H ₃ PO ₄ H ₂ PO ₄		Dihydrogenphosphat-lon	11,87		
2,22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-lon	11,78		
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F	Fluorid-Ion	10,86		
3,35	Salpetrige Säure	HNO ₂ NO ₂		Nitrit-Ion	10,65		
3,75	Ameisensäure (Methansäure)	нсоон	HCOO.	Formiat-lon (Methanoat-lon)	10,25		
4,75	Essigsäure (Ethansäure)	СН₃СООН	CH₃COO	Acetat-Ion (Ethanoat-Ion)	9,25		
4,85	Hexaqua-Aluminium-Ion	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9,15		
6,52	Kohlensäure	H ₂ CO ₃ / H ₂ O + CO ₂	HCO ₃	Hydrogencarbonat-Ion	7,48		
6,92	Schwefelwasserstoff Säure	H ₂ S	HS ⁻	Hydrogensulfid-Ion	7,08		
7,00	Hydrogensulfit-lon	HSO ₃ *	SO ₃ ² -	Sulfit-Ion	7,00		
7,20	Dihydrogenphosphat-Ion	H ₂ PO ₄	HPO ₄ ² ·	Hydrogenphosphat-Ion	6,80		
9,25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4,75		
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN	Cyanid-Ion	4,60		
9,60	Hexaqua-Zink(II)-Ion	$[Zn(H_2O)_6]^{2+}$	$[Zn(OH)(H_2O)_5]^{\dagger}$	Pentaqua-hydroxo-Zink(II)-Ion	4,40		
10,40	Hydrogencarbonat-Ion	HCO ₃	CO32-	Carbonat-lon	3,60		
12,36	Hydrogenphosphat-lon	HPO ₄ ²⁻	PO ₄ ³ ·	Phosphat-Ion	1,64		
13,00	Hydrogensulfid-lon	HS.	S^{2}	Sulfid-Ion	1,00		
Keine Protonenabgabe	Wasser	H ₂ O	OH.	Hydroxid-Ion	, E		
	Ethanol	CH₃CH₂OH	CH ₃ CH ₂ O [*]	Ethanolat-Ion	dige		
	Ammoniak	NH ₃	NH ₂	Amid-fon	Vollständige Protonenaufnahm		
	Hydroxid-Ion	OH.	O ²⁻	Oxid-Ion			
	Wasserstoff	H ₂	H.	Hydrid-Ion	Pro		

pK _S	Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base		
1,70	Thymolbiau	rot	1,2 - 2,8	gelb		
3,40	Methylorange	rot	3,0 - 4,4	gelb-orange		
4,70	Bromkresolgrün	gelb	3,8 - 5,4	blau		
5,00	Methylrot	rot	4,2 - 6,2	gelb		
6,50	Lackmus	rot	5,0 - 8,0	blau		
7,10	Bromthymolblau	gelb	6,0 - 7,6	blau		
8,90	Thymolblau	gelb	8,0 - 9,6	blau		
9,40	Phenolphthalein	farblos	8,2 - 10,0	ригриг		
10,00	Thymolphthalein	farblos	9,3 - 10,5	blau		
11,20	Alizaringelb R	gelb	10,1 - 12,1	rot		