

Bei Berechnungen ist der ausführliche Rechenweg (erst Formeln, dann umstellen und dann erst Zahlenwerte samt Einheiten einsetzen) anzugeben.

Alle Fragen sind in der angegebenen Reihenfolge zu beantworten.

Die Ergebnisse sind mit 3 signifikanten Stellen anzugeben.

I. Säure-Base-Reaktionen (7+4+1+2+2+1,5+3,5=) 21 Punkte

I.1. Salzlösungen und pH

I.1.1. Folgende Salze werden in Wasser gelöst:

7 Punkte

a) Kaliumhydrogensulfid (KHS)

(3)

b) Magnesiumsulfid (MgS)

(4)

Geben Sie für jedes der Salze die Lösungsgleichung und die relevanten Protolysegleichungen an und bestimmen Sie so den pH-Charakter (sauer, neutral oder alkalisch) der jeweiligen Lösungen.

I.2. Titration einer schwachen Base mit HCI

(4+1+2=) 7 Punkte

Bei sportlicher Aktivität entsteht unter anaeroben Bedingungen Milchsäure (2-Hydroxypropansäure $C_3H_6O_3$; pKs = 3,9) in den Muskeln. Da das menschliche Blut jedoch alkalisch ist, findet sich die Milchsäure unter der Form ihrer korrespondierenden Base, Laktat ($C_3H_5O_3^-$), im Blut wieder. Um die Laktat-Konzentration im Blut eines Athleten festzustellen, werden 10mL Blut mit 5mL HCl 0,001 M bis zum Äquivalenzpunkt titriert.

- I.2.1. Stellen Sie die Neutralisationsgleichung auf und berechnen Sie den pH-Wert am Äquivalenzpunkt. (4)
- 1.2.2. Berechnen Sie die Stoffmenge an Laktat die in 5L Blut enthalten ist. (1)
- I.2.3. Bestimmen Sie einen für diese Titration theoretisch geeigneten Farbindikator und begründen Sie Ihre Wahl. (2)

I.3. Herstellung eines Puffers.

(2+1,5+3,5=) 7 Punkte

- 1.3.1. Definieren Sie die Begriffe Puffer und Pufferbereich samt Zahlenwerten. (2)
- 1.3.2. Im Labor finden Sie eine ammoniakalische Lösung mit einer Stoffmengenkonzentration von 0,75M. Berechnen Sie den pH-Wert dieser Lösung.

(1,5)

I.3.3. Sie entnehmen genau 100mL dieser Lösung und wollen durch Hinzufügen von Salzsäure 1,5M einen Puffer mit einem pH-Wert von 9,25 herstellen. Bestimmen Sie daraufhin das benötigte Volumen an Salzsäure in Millilitern. (3,5)

II. Orbitalmodell und Quanten (1,5+1,5+6+3=)12 Punkte

- II.1. Formulieren Sie für folgende Teilchen die angegebene Elektronenkonfiguration:
 - i. Einfache Elektronenkonfiguration von **Ba²**+ (1,5)
 - ii. Vereinfachte Elektronenkonfiguration von **Po** (1,5)
- II.2. Geben Sie für die 4 Quantenzahlen deren Bedeutung und die Zahlenwerte an, die diese Zahlen annehmen können. (6)
- II.3. Zeichnen Sie das Molekularorbitalmodell der Bindungen im Chlormolekül Cl₂. (Berücksichtigen Sie nur die Valenzelektronen) (3)

III. Organische Chemie

(3+6+4+5+2+4+3=) 27 Punkte

III.1. Nomenklatur und theoretische Grundlagen

III.1.1. Benennen Sie folgende Moleküle mit ihrem IUPAC-Namen: (3)

a.

b.

C.

III.1.2. Zeichnen Sie folgende Moleküle (mittels Skelettformel) und klassieren Sie diese nach aufsteigender Siedetemperatur. Begründen Sie Ihre Antwort anhand der zwischenmolekularen Kräfte. (6)

- A. Hexan-1-ol
- B. n-Heptan
- C. Pentansäure
- D. Hexanal

III.1.3. Elektrophile Addition

Folgende Alkene reagieren mit HBr. Erstellen Sie die Halbstrukturformel aller Additionsprodukte und geben Sie deren IUPAC Namen an. Bestimmen Sie anhand der Markovnikov-Regel, welche Produkte bevorzugt gebildet werden, wenn mehrere Produkte gebildet werden können.

III.2. Reaktionsmechanismen und Nachweisreaktionen

14 P

- III.2.1. Darstellung von 3-Chlor-3-ethylpentan
 - a. Formulieren Sie mittels Strukturformeln den Reaktionsmechanismus für die Bildung von 3Chlor-3-ethylpentan aus 3-Ethylpentan und Chlor unter Lichteinfluss. Benennen Sie die
 verschiedenen Etappen und eventuelle Zwischenstrukturen. (5)
 - b. Neben 3-Chlor-3-ethylpentan entstehen bei dieser Synthese auch noch Nebenprodukte.
 Geben Sie die Halbstrukturformel für 2 weitere verschiedene Halogenalkane als Nebenprodukte an und benennen Sie diese.
- III.2.2. Folgende Alkohole reagieren mit CuO. Erstellen Sie die Reaktionsgleichungen, geben Sie die relevanten Oxidationszahlen an und benennen Sie jeweils das organische Produkt.

 (4)
 - a. Butan-1-ol
 - b. Pentan-2-ol
- III.2.3. Bestimmen Sie, welches der Produkte (**a** oder **b**) eine positive Silber(I)-nitrat-Probe im Alkalischen aufweist. Formulieren Sie diesbezüglich die allgemeine REDOX-Gleichung samt Oxidationszahlen. (3)

Anhang 1: pK Tabelle:

pKs	Säure		Korrespondierende Base					
- 10,0	Perchlorsäure	HClO₄	CIO ₄ -	Perchlorat-lon	24,0			
-10,0	lodwasserstoffsäure	HI	l-	lodid-lon	24,0			
- 8,9	Bromwasserstoffsäure	HBr	Br -	Bromid-lon	22,9			
-6,0	Salzsäure	HCI	CI -	Chlorid-lon	20,0			
-3,0	Schwefelsäure	H ₂ SO ₄	HSO ₄ -	Hydrogensulfat-lon	17			
-1,74	Oxonium-lon	H₃O⁺	H₂O	Wasser	15,74			
-1,32	Salpetersäure	HNO₃	NO ₃ -	Nitrat-lon	12,08			
1,88	Schwefelige Säure	H ₂ SO ₃	HSO ₃ -	Hydrogensulfit-lon	12,12			
1,92	Hydrogensulfat-lon	HSO₄ −	SO ₄ ²⁻	Sulfat-Ion	12,08			
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄ -	Dihydrogenphosphat-lon	11,87			
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F-	Fluorid-Ion	10,86			
3,35	Salpetrige Säure	HNO ₂	NO ₂ -	Nitrit-Ion	10,65			
3,75	Ameisensäure (Methansäure)	нсоон	HCOO-	Formiat-Ion (Methanoat-Ion)	10,25			
4,75	Essigsäure (Ethansäure)	CH₃COOH	CH₃COO-	Acetat-Ion (Ethanoat-Ion)	9.25			
6.52	Kohlensäure	H ₂ CO ₃ / H ₂ O + CO ₂	HCO₃-	Hydrogencarbonat-lon	7,48			
6,92	Schwefelwasserstoff Säure	H ₂ S	HS-	Hydrogensulfid-Ion	7,08			
7,00	Hydrogensulfit-lon	HSO₃ -	SO ₃ ²⁻	Sulfit-Ion	7,00			
7,20	Dihydrogenphosphat-Ion	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	Hydrogenphosphat-lon	6,80			
9,25	Ammonium-Ion	NH ₄ ⁺	NH₃	Ammoniak	4.75			
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN-	Cyanid-lon	4,60			
10,40	Hydrogencarbonat-lon	HCO₃ -	CO ₃ ²⁻	Carbonat-Ion	3,60			
12,36	Hydrogenphosphat-lon	HPO ₄ ²⁻	PO ₄ ³⁻	Phosphat-lon	1,64			
13,00	Hydrogensulfid-Ion	HS-	S ²⁻	Sulfid-Ion	1,00			
15,74	Wasser	H ₂ O	OH -	Hydroxid-lon	-1,74			
15,8	Methanol	CH₃OH	CH₃O -	Methanolat-Ion	-1,8			
15,9	Ethanol	CH₃CH₂OH	CH ₃ CH ₂ O -	Ethanolat-lon	- 1,9			
24	Hydroxid-lon	OH -	O ²⁻	Oxid-Ion	- 10			

Anhang 2: Indikatoren:

Indikator	Farbe der Säure	pKs	Farbe der Base				
Thymolblau	rot	1,7	gelb				
Methylorange	rot	3,8	gelb-orange				
Bromkresolgrün	gelb	4,7	blau				
Methylrot	rot	5,1	gelb				
Lackmus	rot	6,5	blau				
Bromthymolblau	gelb	7,0	blau				
Phenolphthalein	farblos	9,4	purpur				
Alizaringelb R	gelb	11,1	rot				

Examen de fin d'études secondaires – 2024

Periodensystem der Elemente

	Hai	upt-		Nebengruppen									-gruppen						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	la 1,00794					,00794												VIIIa 4,002602	
(K)	1 H 2.1 □	lla	EN nac	h Pauling		1 H							IIIa	IVa	Va	Vla	VIIa	₂He	
2	6,941 3 Li 1,0	9,012182 4 Be										10,811 5 B	12,0107 6 C 2,5	14,00674 7 N 3,0	15,9994 8 O 3,5	18,9984 9 F 4.0 □	20,1797 10 Ne		
(=)	22,98977	24,305		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		26,98154	28,0855	30,97376	32,066	35,4527	39,948	
(M)	11 Na 0,9 ■	12 Mg	IIIb	IVb	Vb	VIb	VIIb		VIII		lb	llb	13 AI 1,5 ■	14 Si 1,8 ■	15 P 2,1 □	16 S 2,5 □	17 CI	18 Ar □	
(141)	39,0983	40,078	44,95591	47,867	50,9415	51,9961	54,93805	55,845	58,9332	58,6934	63,546	65,409	69,723	72,61	74,9216	78,96	79,904	83,8	
4	19 K	20Ca	21 SC	22 Ti	23 V	24Cr	25 Mn	26 Fe	27 Co	28 N İ	29 Cu	30 Zn	31 Ga	32 Ge	33 A S	34 Se	35 B r	36Kr	
(N)	85,4678	87,62	88,90585	91,224	92,90638	95,94	[98]	101,07	102,9055	106,42	107,8682	112,411	114,818	118,71	121,76	127,6	2,8 \square 126,9045	131,29	
5	37 Rb	38 S r	39 Y	40 Z r	41 Nb	42 Mo	43 Tc	44Ru	45Rh	46Pd	47Ag	48 Cd	49 ln	50 Sn	51 Sb	52 Te	53	54 Xe	
(O)	132,9055	137,327	138,9055	178,49	180,9479	183,84	186,207	190,23	192,217	195,078	196,9666	200,59	204,3833	207,2	208,9804	[209]	2,5 □ [210]	[222]	
6	55 CS	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 O S	77 r	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
(P)																4 <u>1</u> 4	*	* * □	
	[223]	[226]	[227]	[261]	[262]	[263]	[264]	[265]	[268]	[269]	[272]	[277]	[287]	[289]	[288]	[289]	[293]	[294]	
7	87 F r	88Ra	89 A C	104 Rf	105 Db	106 S g	107 Bh			110 D S		112 Cn		114 FI	115MC			118 Og	
(Q)	- <u>r</u>	☆ ■	**	☆ ★ ■	* * -	** * =	* * -	** * •	* ★ ■	* * ■	* * ■	* * ■	* ★ ■	* * ■	* * ■	* =	* * -	* * ■	
				140,116	140,9077	144,24	[145]	150,36	151,964	157,25	158,9253	162,5	164,9303	167,26	168,9342	173,04	174,967		
	Lanthanoide		58Ce	59Pr	60 N d	61Pm	62 Sm	63 EU	64 G d	65 Tb	66 Dy	67 HO	68 Er	69 Tm	70 Yb	71Lu			
				[232]	[231]	[238]	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]		
	Actinoide			90 Th	91 Pa	92 U	93 Np	94Pu	95 <mark>A</mark> m		97 Bk	98 C f	-	100 Fm					
			4 <u>4</u> 4	*	* <u>*</u>	4.A.	*	* * -	* * -	* * -	* * -	** * •	* * -	* *	* * =	* * -			