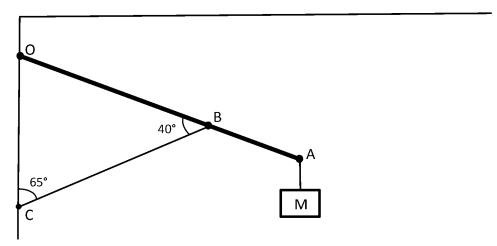
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

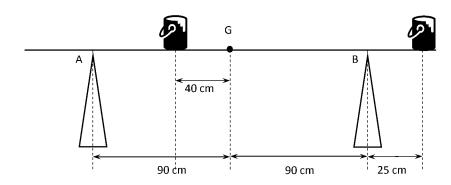

Date :	19	0.05.23	Durée :	08:15 - 10:15		Numéro candidat :			
Discipline :				Section(s):					
Physique médicale					GSH				

Aufgabe 1 (3 + 8 = 11 P)

Am Ende eines homogenen Balkens der Masse 7 kg und der Länge OA = 3.6 m ist eine Masse M = 18 kg befestigt. Der Balken ist drehbar im Punkt O und wird mit Hilfe einer Stange im Gleichgewicht gehalten, welche im Punkt C befestigt ist. (siehe Bild)

Es gilt:
$$OB = \frac{2}{3}OA$$
.

- a. Fertigen Sie eine Skizze mit allen relevanten Kräften und Hebelarmen an.
- b. Berechnen Sie die Kraft in der Stange.

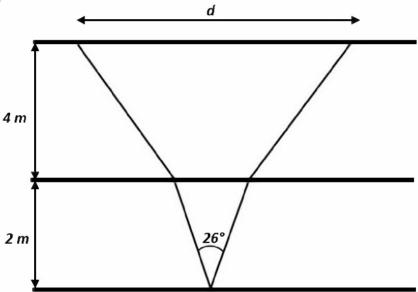

Aufgabe 2 (6 P)

Auf einem homogenen 2,5 m langen Brett stehen zwei Farbeimer mit gleicher Masse.

Berechnen Sie die Intensitäten der Auflagerkräfte in den Punkten A und B.

Masse des Brettes: $m_{Brett} = 11 kg$

Masse eines Farbeimers: $m_{Farbeimer} = 6 kg$


Aufgabe 3 (5 P)

Ein Gegenstand wird durch eine Linse der Brennweite $f = 40 \, mm$ betrachtet. Man sieht ein vierfach vergrößertes virtuelles Bild.

Berechnen Sie die Gegenstandsweite (in cm) und die Bildweite (in cm).

Aufgabe 4 (9 P)

Ein Einbaustrahler, welcher am Grund eines 2 m tiefen Schwimmbeckens ($n_{Wasser} = 1,33$) platziert ist, strahlt symmetrisch unter einem Winkel von 26°. Bis zur Decke der Schwimmhalle sind es von der Wasseroberfläche noch einmal 4 m. Zwischen dem Wasser und der Decke der Schwimmhalle befindet sich Luft.

Berechnen Sie den Durchmesser d des an der Decke beleuchteten Bereichs dieses Strahlers. Fertigen Sie hierzu eine Skizze mit allen zur Berechnung benötigten Winkeln und Längen an.

Aufgabe 5 (4 P)

Zwischen einen Gegenstand und einen 114 cm entfernten Schirm wird eine Sammellinse gestellt. Das reelle Bild soll doppelt so groß sein wie der Gegenstand.

Berechnen Sie die Gegenstands- und Bildweite.

Aufgabe 6 (2 + 2 + 4 + 2 = 10 P)

Mit zwei monochromatischen Lichtquellen der Wellenlängen λ_1 = 380 nm und λ_2 = 275 nm wird nacheinander eine negativ geladene Graphitplatte (Austrittsarbeit 4 eV) bestrahlt.

- a. Erklären Sie, was man unter dem Photoeffekt versteht.
- b. Bei welche(n) der oben genannten Lichtquellen entlädt sich die Graphitplatte? Begründen Sie, indem Sie die Grenzwellenlänge (in *nm*) für Graphit berechnen!
- c. Berechnen Sie die maximale Geschwindigkeit der ausgelösten Elektronen für die oben genannte(n) Wellenlänge(n), bei der/denen laut a) eine Entladung der Metallplatte stattfindet.
- d. Die Graphitplatte wird nun durch eine Kaliumplatte (Austrittsarbeit: 2,25 eV) ersetzt und diese wird wieder mit den beiden Lichtquellen bestrahlt. Wird die Geschwindigkeit der ausgelösten Elektronen nun größer oder kleiner? Begründen Sie Ihre Antwort in 1-2 Sätzen! (ohne Rechnung!)

Aufgabe 7 (1 + 3 + 4 + 3 = 11 P)

In der Strahlentherapie kommt Iridium-192 (Ir-192) zum Einsatz. Ir-192 ist ein Gamma-Strahler mit einer Halbwertszeit von 74 Tagen.

- a. Definieren Sie: Halbwertszeit.
- b. Kopieren Sie die Tabelle und füllen Sie diese mithilfe der Periodentafel aus.

	¹⁹² Ir
Anzahl Protonen	
Anzahl Elektronen (im Kern)	
Anzahl Neutronen	

- c. Berechnen Sie wie viel *mg* Ir-192 benötigt werden, um eine Aktivität von 800 *GBq* zu erreichen.
- d. Berechnen Sie die Zeit (in Tagen), bis die Aktivität einer Ir-192-Quelle um 70 % abgenommen hat.

Aufgabe 8 (2 + 2 = 4 P)

Richtig oder falsch? Begründen Sie Ihre Antwort in einem Satz!

- a. Röntgenstrahlung entsteht, wenn schnelle Photonen stark abgebremst werden.
- b. Röntgenstrahlung besteht wie Licht aus Photonen, deren Wellenlänge allerdings deutlich über der von sichtbarem Licht liegt.

Naturkonstanten

Masse des Protons: $m_p = 1,673 \cdot 10^{-27} \, kg$

Masse des Neutrons: $m_n = 1,674 \cdot 10^{-27} \, kg$

Masse des Elektrons: $m_e = 9,109 \cdot 10^{-31} \, kg$

Elektrische Elementarladung: $e = 1,602 \cdot 10^{-19} C$

Vakuumlichtgeschwindigkeit: $c = 3 \cdot 10^8 \frac{m}{s}$

Planck-Konstante: $h = 6,626 \cdot 10^{-34} J \cdot s$

Atomare Masseneinheit: $1 u = 1,661 \cdot 10^{-27} kg$

Avogadro-Konstante: $N_A = 6{,}022 \cdot 10^{23} \text{ mol}^{-1}$

	ı																1 (0004
1 1,008 0,00[1] 2,2																	2 4,0026
-259 / -253	'												He -/-269				
Wasserstoff	Ordnungszahl 1, UU8 + Relative Atommasse in u												Helium				
3 6,94 -3,040(1) 0,98	4 9,0122 -1,79 2 1,57	151 — Elektronenkontiguration								5 10,81 -0,890(3) 2,06	6 12,011 0,206[6] 2,55	1,45(3) 3,04	8 15,999 1,229 -2 3,44	9 18,998 3,053[-1] 3,98	10 20,180		
[He]Zs1 181 / 1347	[He]Zs² 1278 / 2470	S.III & IIII C	-259 / -253 Schmelz-/ Siedetemperatur in °C							[He]2s ² 2p ¹ 2180 B / 3650	[He]2s ² 2p ² 3750 G / 4830 4, 2, -4	[He 2s ² 2p ² -210/-196 5, 4, 3	[He]2n²2p² -219/-183 -2, -1	[He]2s ² 28 ³ -220 / -188	[He]2s ² 2p ⁴ -249 / -246		
Lithium	Re Berkillinu	Symbol							B _{Bor}	Kohlenstoff	2,-3 Stickstoff	Sauerstoff	Fluor	Ne Neon			
11 22,990 -2,713 1 0,93 [Nel3s]	12 24,305 -2,356[2] 1,31	rease ston								13 26,982 -1,676[3] 1,61	14 28,085 -0,909(4) 1,9	15 30,974 -0,502[3] 2,19	16 32,06 0,144 -2 2,58	17 35,45 1,358 -1 3,16	18 39,948 INEl3s23p4		
Na 1	Ma 2										-189 / -186						
Natrium	Magnesium											Ar Argon					
19 39,09B -2,925 1) 0,82	20 40,078	21 44,956 -2,03[2] 1,34	-1,62(2) 1,54	23 50,942	-0,913(2) 1,46	25 54,938 -1,180[2] 1,55	26 55,845 -0,440 2) 1,83	27 58,933 -0,277[2] 1,88	-0,257[2] 1,91	29 63,546 0,340[2] 1,9	-0,743(2) 1,45	31 69,723 -0,529[3] 1,01	32 72,63 -0,036(4) 2,01	33 74,922 0,240(3) 2,18	34 78,96 -0,40[-2] 2,55	35 79,904 1,065[-1] 2,96	36 83,798 3
(Ar)461 63/760	[Ar]45' 839 / 1484	[Ar[3d/4s² 1541/2836	[Ar]3d/48° 1668 / 3262 4, 3	[Arl3d ² 4s ² 1890 / 3378 8, 4, 3, 2, 0	[Ar]3d ⁴ 6s ¹ 1898 / 2640 	[Ar]3d ¹ 6s ¹ 1266 / 2032 7, 6, 6	(Ar(30°4s' 1535 / 2750 6, 3, 2 0, -2	[Ar]3d'4s² 1695/2870 3, 2, 0	(Ar)3d'4s² 1653/2732 3,2,0	(Ar]3d ^M 4s ¹ [083/2595 2,1	(Ar)3d*4s* 420 / 907	(Ar)3d*4s*4p* 30/2403	(Ar)3d104s24p2 937 / 2830	(Ar)3d**4s*4p* 817 / 615 subt. 5, 3, -3	(Ar)3d*4s*6p* 217/685 6, 4, -2	Rr 7,5,3	[Ar]36"6s*4p* -157/-153
Kalium	Calcium	Sc '	Titan	Vanadium	Chrom	Mn 7, 6, 6 3, 2, 0 -1 Mangan	Fe 0, -2	Co 3, 2,0 Coball	Nickel	Kupfer	Zink	Gallium	Germanium	As 5,5,5	Se 5,4-2 Selen	Br 🖓	Kr ²
37 85,468 -2,924 1 0,82 (Kr)5s1	38 87,62 -2,89 21 0,95 Kr 5s ²	39 88,906 -2,37(3) 1,22 [Kr]4d ¹ 5s ²	40 91,224 -1,55(4) 1,33 [Kr]4d ² 5s ²	41 92,906 -1,099 31 1,6 [Kr]4d*5s*	42 95,962 -0,20(3) 2,14 [Kr]4d*5s1	43 98,906 0,2814 1,9 [Kr]4d ² 5s ¹	44 101,07 0,623 3) 2,2 [Kr[4d754]	45 102,91 -0,76 3) 2,28 [Kr]4d*5s1	46 106,42 0,915 21 2,2 Kr]4d ²⁰	47 107,87 8,799(1) 1,93 [Kr]4d ¹⁴ Sa ¹	48 112,41 -0,403(21 1,69 [Kr]4d ¹⁰ 5s ²	49 114,82 -0,343(3) 1,78 [Kr]4d*95*5p*	50 118,71 -0,137 2) 1,96 (Kr)4d ^{1/5} 5 ² 5p ²	51 121,76 0,150(3) 2,05 [Kr]4d ¹⁰ Sa ² Sp ²	52 127,60 -0,69[-2] 2,1 [Kr]4d1*5x25pt	53 126,90 0,5361-11 2,66 [Kr]6d ¹⁰ Ss ¹ Sp ¹	54 131,29 2,6 [Kr]4d*5s*5p*
Rb 1	Sr 2	1522/3338	1852 / 4377	2458 / 4928	Mo 3.2.0	2172/4877	Ru*,6,4,3	1966 / 3730	Pd 4,2,0	962/2163	321 / 765	157/2080	Sn 42	Sb 5,3,-3	Te 6,4,-2	114 / 184 7, 5, 1	-112/-108
Rubidium	Strontium	Yttrium	Zr 2irconium	Nb 5.3	Molybdan	TC Technetium	Ruthenium	Rhodium	Patladium	Ag "	Cadmium	Indium	2inn	Antimon	Tellur	lod	Xe z.4.*
55 132,91 -2,923 1 0,79	56 137,33 -2,92(2) 0,89		72 178,49 -1,70 4 1,3	73 180,95 -0,812 5 1,5	74 183,84 -0,199(4) 2,36	75 186,21 0,22 4 1,9	76 190,23 0,487(4) 2,2	77 192,22 1,158 3 2,2	78 195,08	79 196,97 1,691[]] 2,54	80 200,59 0,860121 2	81 204,38 -0,336(1) 1,62	82 207,2 -0,125(2) 2,33	83 208,98 0,317(3) 2,02	84 209,98 1,0[-2] 2	85 210,99 0,25 -1 2,2	86 222,02
[Xe]6s1 28 / 678	725 / 1696		[Xa]41 145d ² 6a ² 2227 / 4602	[Xe]4115d3653 2996/5425	(Xe)4f*5d*6a² 3410 / 5657 4, 5, 4 3, 2, 0	[Xe]4f*5d*6s* 3180 / 5630 7, 6, 4	[Xe]4f*5d*6s* 3054/5027	[Xe]4f*9d*6s* 2410 / 4530 6, 6, 3, 2 1, 0, -1	[Xe]41 ¹⁹ 5d ¹ 65 ¹ 1772 / 3827	Dej&f**Sd**6s** 1064 / 2808 A 3, 1	[Xx]4(145d116s1 -39 / 357	[Xa 4f**5d**6s*6p* 303 / 1457 3, 1	(Xe)A/%5d%6s%p1 328 / 1740	(Xe)41*5d*4s*6p* 271 / 1560 5, 2	[Xe]41 ⁶⁵ 5d ⁶⁵ 69 ⁴ 254 / 962 6, 4, 2	[Xe]41 ¹⁴ 5d ¹⁶ 6s ² 6p ³ 302 / 370 A	[Xe 41"5d"6s*6p* -71 / -62
Caesium	Barium '		Hafnium	la '	3, 2, 0 Wolfram	Re 7,6,4	0s 2,0,-2	lridium	Platin	Au *	Hg 2.1	Thattium	Pb 42 Blei	Bismut	Po 6,4,2 Polonium	At 7,5,3 Astat	Radon
87 223,02 -2,9(1) 0,7 (Rn)7s1	88 226,03 -2,916[2] 0,9 [Rn]7s ²		104 267,12	105 268,13 fRnl5f*6d*7s²	106 271,13	107 267,13	108 277,15	109 276,15 (Rn)56%44'78'	110 281,16 (Rnl5f*#4078*	111 280,16	112 285,17	113 284,18 [Rn]5f**4d**7s*7p*	114 289,19 [Rn]51"44"75"7p2	115 288,19 [Rn]5f**6d**7s*7p*	116 292,20 [Rn]51"6d"7s"7p"	117 (294) Rn 51"66"75"7p"	118 [294] [Rn]51"66"78"7p*
Fr 27/677	700 / 1140		Df	Db	Sq	DL	Hs	Mŧ	Ds	D	C	Nh	FL	Мс	Lv	Ts	_
Francium	Radium		Rutherfordium	Oubnium	Seaborgium	Bohrium	Hassium	Meitnerium	D3 Darmstadtium	KG Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tenness	Ug Oganesson
			57 138,91	58 140,12	59 140,91	60 144,24	61 146,92		63 151,96			66 162,50	67 164,93	68 167,26		70 173,05	71 174,97
			-2,38[3] 1,1 [Xe]5d'6s' 920 / 3469	-1,33(4) 1,12 (Xe)4(76s ² 798/3443	-0.96(4) 1,13 [Xn]4!'6s ² 931/3250	-2,2 2 1,14 [Xe]4f*6s* 1024/3074	-2,29(3) 1,13 Xe)496s* 931 / 2730	-2,67[2] 1,17 [Xe]4f45s ² 1074 / 1794	-2,80[2] 1,2 [Xe]4F4s ² 826 / 1439	-2,28(3) 1.2 [Xn)4f*5d*6s* 1312 / 3273	-2,31[3] 1,2 (X4]476s ² 1356 / 3230	-2,29[3] 1,22 (Xa)41146s ² 1407 / 2562	-2,33[3] 1,23 [Xa]41"6s ² 1474 / 2720	-2,32[3] 1,24 [Xs]4f126s2 1497 / 2863	-2,32[3] 1,25 [Xe]41 ¹² 6s ² 1545 / 1947	-2,22(3) 1,1 [Xe]4f ³⁴ 6s ² 819 / 1196	-2,30(3 1,27 (Xe)4f*5d*6s² 1663 / 3375
			La '	Ce '	Pr 4.3	Nd 8	Pm Promethium	Sm *.2	Eu 3, 2	Gd 3	Tb 4.3	Dy 3 Dysprosium	Ho 3	Er '	Tm 3,2	Yb 9.2 Ytterbium	Lu '
			89 227,03 -2,13 3 1,1	90 232,04	91 231,04 -1,19(5) 1,5	92 238,05 -0,836[3] 1,38	93 237,05 -1,01(5) 1,36	94 244,06 -1,25 4 1,28	95 243,06 -1,95[2] 1,3	96 248,07 -2,06(3) 1,3	97 249,08 -1,96 3 1,3	98 252,08 -1,91[3] 1,3	99 254,09 -1,98 3 1,3	100 257,1 -2,5 2 1,3	101 260,10 -2,53 2 1,3	102 259,10 -2,6 2 1,3	103 262,11 -2,1 3 1,3
			[Rn]6d ¹ 7a ² 1050 / 3200	[Rn]66'7s' 1750 / 4788	IRnl5f*6d*7s* 1845 / 4027 5, 4	[Rn]5f'6d'7s' 1132/3930 4, 5, 4, 3	[Rn]5#6d'7s ² 630 / 3902 6, 5, 4	Rn 5 4762 641/3232 6,5,4	[Rn]51752 994 / 2607 6, 5	(Rn 5f/6d'7s ² 1340 / 3110 4, 3	[Rn]5f75 ² 986 / 2950	Rn S1*7s2 950/- 6,3	[Rn]5I ¹⁷ s ² 860 / -	[Rn]51127s2 900/-	[Rn]51 ¹⁰ 7s ² -/-	[Re]5f ¹⁶ 7s ² -/- 3, 2	(Rn)5(*6d*7s²
			AC Actinium	Thorium	Pa *.*	Uran	NP "3 Neptunium	Plutonium	Am 3	Curlum	Bk 4.3 Berkelium	Californium	Es '	Fermium	Md ³ Mendelevium	No Nobelium	Lawrencium

Wolfenthal