
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	20.0	09.23	Durée :	14:15 - 16:15		Numéro candidat :	
Discipline :				Section(s):			
		Mécaniqu	ıe		GIG		

Aufgabe 1

18P. (2P.+4P.+1P.+3P.+5P.+3P.)

Eine Seiltrommel wird über ein 3-stufiges Zahnradgetriebe von einem Elektromotor angetrieben. Der Wirkungsgrad dieses Getriebes beträgt η_G = 89 %.

Zähnezahlen: $z_1 = 16$; $z_2 = 42$; $z_3 = 136$; $z_4 = 14$; $z_5 = 70$

Der Elektromotor beschleunigt eine Masse (m = 200 kg) innerhalb von 4,5 Sekunden aus dem Stillstand bei einer maximalen Drehzahl von $n_M = 2500 \text{ min}^{-1}$.

Diese Masse wird über ein Stahlseil und eine Seiltrommel (η_T = 0,78 ; d_T = 750 mm) in die Höhe gehoben. Das Stahlseil besteht aus 6 Litzen zu je 19 Drähten. Ein Draht hat einen Durchmesser von 0,8 mm, wenn er nicht belastet ist.

Berechnen Sie:

- a) das Gesamtübersetzungsverhältnis i_{qes} dieses 3-stufigen Zahnradgetriebes.
- b) die Drehzahl der Trommel sowie die Hubgeschwindigkeit der Masse nach 4,5 Sekunden.
- c) die Beschleunigung a der Masse.
- d) die Seilkraft F_S im Zugseil während der Beschleunigungsphase. (Lageskizze nach d'Alembert; Aufstellung der Gleichgewichtsbedingungen)
- e) das bei der Beschleunigung vom Elektromotor abgegebene Drehmoment M_M .
- f) die Zugspannung im Stahlseil.

 F_2

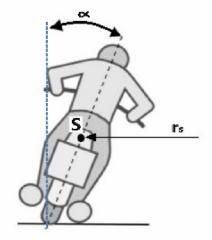
14P. (5P.+1P.+8P.)

a) Zeichnen und beschriften Sie das Spannungs-Dehnungs-Diagramm eines zähen Stahls mit ausgeprägter Streckgrenze. Markieren und benennen Sie alle charakteristischen Werkstoffkennwerte.

- b) Erklären Sie die Bedeutung des Werkstoffkennwertes $R_{p0.2}$.
- c) Leiten Sie, ausgehend von einer sorgfältigen Skizze, die Formel zur Berechnung des Flächenmomentes I_x zweiten Grades und die des axialen Widerstandsmomentes W_x eines Rechteckquerschnittes der Breite b und der Höhe h her.

Aufgabe 3 14P. (4P.+4P.+3P.+3P.)

Ein Stahlbalken wird in den Punkten A und B gestützt. Drei Kräfte F_1 = 10 kN, F_2 = 6 kN und F_3 = 8 kN wirken auf diesen Stahlbalken, deren Abstände zu den jeweiligen Punkten aus der Skizze zu entnehmen sind. (a = 200 mm)


- a) Berechnen Sie die Stützkräfte F_A und F_B .
- b) Skizzieren Sie den Querkraftverlauf für den gesamten Stahlbalken und markieren Sie alle die in Frage kommenden Stellen für den maximalen Biegemoment im Querkraftverlauf.
- c) Berechnen Sie alle gekennzeichneten Stellen. Bestimmen Sie die Stelle des maximalen Biegemomentes $M_{b,max}$.
- d) Bestimmen Sie die Mindestabmessungen des hochkant liegenden Stahlbalkens (b/h = 1/3). Die maximale Biegespannung $\sigma_{b,zul} = 120 \text{ N/mm}^2$ darf dabei nicht überschritten werden. ($W = \frac{b \cdot h^2}{6}$)

Aufgabe 4 14P. (5P.+1P.+2P.+3P.+3P.)

Ein Motorradfahrer (m_F = 80 kg) fährt mit 50 km/h am Ortsschild vorbei und beschleunigt danach seine Maschine (m_M = 200 kg) auf einer Strecke von 35 m mit a = 3,6 m/s². Mit der erreichten Geschwindigkeit durchfährt er eine nicht überhöhte Kurve mit einem Radius r_s = 250 m.

Berechnen Sie:

- a) die Geschwindigkeit des Motorrades nach dieser Beschleunigungsstrecke und die dafür benötigte Zeit. Skizzieren Sie das entsprechende v/t-Diagramm.
- b) die Fliehkraft F_{Fl} während der Kurvenfahrt.
- c) die Fliehkraft F_{Fl} bei doppelter Geschwindigkeit. Erklären Sie dieses Resultat.
- d) den sich einstellenden Neigungswinkel α des Motorradfahrers zur Senkrechten in dieser Kurve. (Lageskizze nach d'Alembert)
- e) die Geschwindigkeit v, ab der das Motorrad in dieser Kurve wegrutscht. Die Haftreibungszahl zwischen Straße und Reifen beträgt $\mu_0 = 0.75$.

