EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	06	.06.23	Durée :	08:15 - 10:45	Numéro candidat :
Disciplin	Discipline :		Mathématiques		GCF / GCG / GCGSL / GCG_ANGDF

Exercice 1: (2+4+2 = 8 points)

Un chocolatier confectionne chaque mois entre 200 et 500 ballotins de pralines. Le bénéfice en **milliers** d'euros, pour *x* **centaines** de ballotins produits et vendus est donné par

$$B(x) = (2x - 5)e^{-x+4}$$

- a) Vérifiez que la dérivée de B est donnée par $B'(x) = (7 2x)e^{-x+4}$.
- b) Dressez le tableau de variation de la fonction *B* sur l'intervalle [2; 5].
- c) Déterminez le nombre de ballotins de pralines pour lequel le bénéfice est maximal et déterminez le bénéfice correspondant.

Exercice 2: (6 points)

Déterminez l'ensemble de définition et résolvez l'inéquation suivante :

$$\ln(x^2 - x - 2) < 2\ln(3 - x)$$

Exercice 3: (5 points)

Déterminez l'ensemble de définition et résolvez l'équation suivante :

$$\left(-2e^{-9x^2+5x} \cdot e^{7x-4} + 2\right) \cdot \left(\frac{e^{3x^2}}{e^{4x-2}} + 1\right) = 0$$

Exercice 4: (10 points)

Faites l'étude complète de la fonction f définie par $f(x) = 2 - 3e^{\frac{1}{2}x-1}$.

(Ensemble de définition, limites et asymptotes éventuelles, intersections avec les axes, dérivée, tableau de variation et représentation graphique)

Exercice 5: (2+2+1=5 points)

Soit la fonction f définie par $f(x) = \ln\left(\frac{54-2x}{x^2}\right)$.

- a) Déterminez le domaine de définition de la fonction f.
- b) Calculez la dérivée de la fonction f.
- c) Déterminez $\lim_{x \to -\infty} f(x)$.

Exercice 6: (2+1+1+2=6 points)

Une enquête réalisée auprès des utilisateurs d'une application smartphone permettant de signaler la présence de contrôles de vitesse sur leurs trajets en voiture a montré que

- pour 10% des trajets il y a une alerte;
- dans 60% des cas où il y a une alerte, il y a un contrôle;
- dans 20% des cas où il n'y a pas d'alerte, il y a un contrôle.
- a) Construisez un arbre qui illustre cette situation.
- b) Quelle est la probabilité qu'il n'y ait pas d'alerte, mais qu'il y ait un contrôle?
- c) Quelle est la probabilité qu'il y ait un contrôle?
- d) Quelle est la probabilité qu'il y ait une alerte sachant qu'il y a un contrôle?

Exercice 7: (2+2=4 points)

On lance un dé à huit faces (octaèdre régulier) numérotées de 1 à 8.

- a) Déterminez la probabilité d'obtenir deux fois un nombre pair en lançant le dé 4 fois.
- b) Déterminez la probabilité d'obtenir au moins une fois le 8 en lançant le dé 6 fois.

Exercice 8: (5+6=11 points)

Dans cet exercice, tous les résultats seront arrondis à 0,01 près.

Le tableau suivant indique l'évolution du nombre d'employés d'une entreprise établie en 2016 au Luxembourg:

Année	2016	2017	2018	2019	2020
Rang de l'année (x_i)	1	2	3	4	5
Nombre d'employés (y_i)	54	95	154	264	421

A) Ajustement affine

- Déterminez les coordonnées du point moyen G.
- Déterminez en %, l'augmentation des employés entre 2016 et 2020.
- Justifiez à l'aide du coefficient de corrélation qu'un ajustement affine est valable. Donnez une équation de la droite de régression de y en x.
- d) Estimez, à l'aide de l'ajustement précédent, le nombre d'employés en 2025.

B) Ajustement non affine

e) Recopiez et complétez le tableau suivant.

Année	2016	2017	2018	2019	2020
Rang de l'année (x_i)	1	2	3	4	5
Nombre d'employés (y_i)	54	95	154	264	421
$z = \ln y$					

- f) Déterminez la droite de régression de z en x.
- g) En utilisant le résultat précédent, déterminez un ajustement de y en x sous la forme $y = C \cdot e^{D \cdot x}$.
- h) Estimez à l'aide de ce nouvel ajustement, le nombre d'employés en 2025.
- i) Estimez aussi, à l'aide de cet ajustement, en quelle année le nombre d'employés dépassera la valeur de 1000.

Exercice 9: (3+2=5 points)

Calculez les intégrales suivantes :

1)
$$\int_{1}^{4} \frac{2x^{3} + 3x^{2} - 2}{x} dx$$
2)
$$\int_{0}^{\ln 2} \frac{3e^{x}}{2} dx$$

2)
$$\int_0^{\ln 2} \frac{3e^x}{2} dx$$