EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	20	0.09.23	Durée :	14:15 - 16:15		Numéro candidat :	
Discipline :				Section(s):			
		Electrotechnique			GIG		

Aufgabe 1: Sinusförmige Wechselgrößen

(1+3+1+2=7P)

Gegeben ist eine sinusförmige Wechselspannung $u(t) = 10V \cdot \sin{(\omega t - 30^{\circ})}$ mit einer Frequenz f = 100 Hz.

- a) Berechne die **Periodendauer T** und den **Elfektivwert U** der Wechselspannung.
- b) Zeichne für eine Periode den zeitlichen Verlauf der Spannung u(t) in ein Signal-Zeit-Diagramm (Skaliere und beschrifte die Achsen).
- Zeichne den Spannungszeiger von u(t) (Maßstab angeben).
- d) Berechne die Zeitpunkte der Nulldurchgänge während der ersten Periode.

Aufgabe 2: Reale Spule

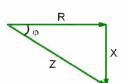
(2 + 2 + 4 = 8P)

An einer realen Spule (ohne Eisenkern) wurden folgende Messungen durchgeführt:

Gleichspannung: $U_1 = 30V$

 $I_1 = 1A$

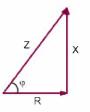
Wechselspannung (f = 250Hz): $U_2 = 20V$ $I_2 = 0.1A$


- a) Skizziere das **Zeigerdiagramm der Widerstände** einer realen Spule (ohne Maßstab).
- b) Berechne den ohmschen Widerstand R der Spule.
- Berechne die *Induktivität L* der Spule.

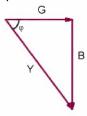
Aufgabe 3: Wechselstromschaltungen

 $(5 \times 1 = 5P)$

Skizziere die Schaltungen (2 Bauelemente R, L oder C) zu folgenden Zeigerdiagrammen!



b)

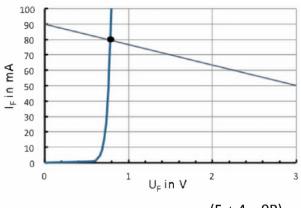


d)

e)

Aufgabe 4: Komplexe Rechnung in der Wechselstromtechnik

(2 + 4 + 4 = 10P)

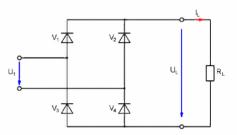

Eine Induktivität L = 200mH liegt parallel zu einem Widerstand R_1 = 300 Ω . In Reihe zu dieser Parallelschaltung liegt ein weiterer Widerstand $R_2 = 500\Omega$. Die gesamte Schaltung liegt an einer We chsels panning $U = 50V \cdot e^{j0^{\circ}}$ / f = 100Hz.

- a) Zeichne die **Schaltung** und trage alle Spannungen und Ströme ein (komplexe Schreibweise).
- Berechne den Gesamtwiderstand **Z** (Normal- und Exponentialform).
- Welchen Wert müsste der Widerstand R₂ haben, damit eine Phasenverschiebung zwischen U und I von 60° entsteht?

Aufgabe 5: Diode (2 + 5 = 7P)

Eine Si-Diode wird in Reihe mit einem Widerstand R an der Betriebsspannung U_B betrieben. Es fließt ein Strom I_F und der Schnittpunkt der Kennlinien von Diode und Widerstand im gezeigten Diagramm ergibt den eingezeichneten Arbeitspunkt.

- a) Skizziere die *Schaltung* mit vollständiger Beschriftung.
- b) Bestimme die Betriebsspannung U_B , die Spannung U_F an der Diode, die Spannung U_R am Widerstand, den Strom I_F sowie den Wert vom Widerstand R.

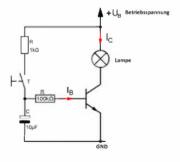


Aufgabe 6: Gleichrichter

(5 + 4 = 9P)

Die nebenstehende Schaltung zeigt einen Zweiweg-Gleichrichter mit idealen Dioden ohne Glättungskondensator. Die Eingangsspannung U_1 ist sinusförmig.

a) Zeichne die folgenden Größen für **2 Perioden** untereinander (Amplituden können frei gewählt werden): Eingangsspannung **U**₁, Ausgangsspannung **U**_L, Laststrom **I**_L, **Strom I**₂ durch die Diode **V**₂, Strom **I**₄ durch die Diode **V**₄.


b) Berechne den arithmetischen Mittelwert (Gleichrichtwert) der Ausgangsspannung U_L.

Aufgabe 7: Transistor als Schalter

(2+1+1=4P)

Was passiert bei der nebenstehenden Schaltung, wenn:

- a) Der Taster T kurz gedrückt wird?
- b) Der Basisvorwiderstand R = $100k\Omega$ verkleinert wird?
- c) Die Kapazität C vergrößert wird?

Aufgabe 8: Transistor als Verstärker

(6 + 4 = 10P)

Eine Verstärkerschaltung (NPN-Transistor in Emitterschaltung) besitzt folgende Merkmale: Betriebsspannung $U_B = 15V$, Kollektorstrom $I_C = 20mA$, Gleichstromverstärkung B = 340, Basisvorspannung $U_{BF} = 0,625V$.

- a) Die Basisvorspannung wird mit einem **Spannungsteiler** erzeugt: Zeichne die **Schaltung** und berechne die **Widerstände** R_1 und R_2 des Spannungsteilers (Querstromfaktor q = 6).
- b) Die Basisvorspannung wird mit einem *Vorwiderstand R* erzeugt: Zeichne die *Schaltung* und berechne den *Wert von R*.