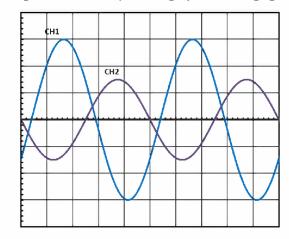
EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT


Date :	06	.06.23	Durée :	08:15 - 10:15		Numéro candidat :	
Discipline :				Section(s):			
	Electrotechnique		que		GIG		

<u>Aufgabe 1 - Wechselgrößen</u> (1 P + 2 P + 2 P + 4 P + 2 P + 1 P = 12 P)

Folgendes Oszillogramm der Ausgangsspannungen von zwei Spannungsquellen ist gegeben:

Darstellung CH1: u₁ CH2: u₂

 $A_{CH1} = 2 \text{ V/div}$ $A_{CH2} = 5 \text{ V/div}$ $A_t = 2.5 \text{ ms/div}$

Der Anfang des Oszillogrammes entspricht dem Zeitpunkt t = 0.

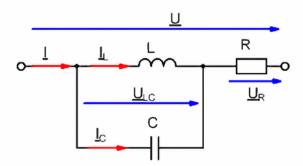
- a) Bestimme die Frequenz.
- b) Bestimme die Phasenverschiebung zwischen den beiden Spannungen und gib an welche Spannung voreilend ist.
- c) Bestimme die Spannungswerte U₁ und U₂ (Effektivwerte).
- d) Zeichne das Zeigerdiagramm der Scheitelwerte der beiden Spannungen u_1 und u_2 . Maßstab: 1V/cm

Die beiden Spannungsquellen werden jetzt in Reihe geschaltet.

- e) Bestimme graphisch den Scheitelwert \hat{u}_{12} der Gesamtspannung (Addition von u_1 und u_2).
- f) Bestimme den Nullphasenwinkel von u₁₂.

Aufgabe 2 - RLC Schaltung (1 P + 2 P + 6 P + 3 P + 3 P = 15 P)

Eine Parallelschaltung eines ohmschen Widerstandes R und einer idealen Spule ist gegeben. Ein Wirkleistungsmesser zeigt 1200W an. Die Schaltung liegt an einer Spannung von 230V / 50Hz. Der Scheinwiderstand Z der gesamten Schaltung beträgt 20Ω .

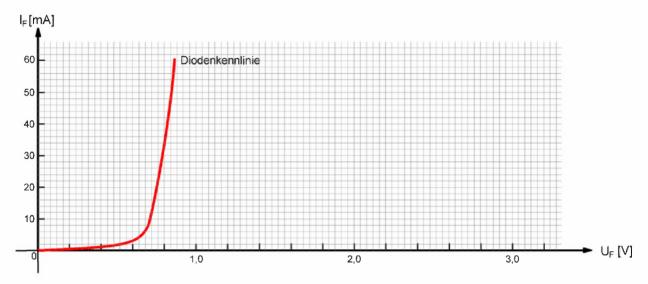

- a) Mit welcher Frequenz fp schwingt die Wirkleistung?
- b) Berechne den Gesamtstrom I und die Scheinleistung.
- c) Berechne R sowie die Induktivität L der Spule.
- d) Berechne den Phasenverschiebungswinkel zwischen I_R und I.

Ein Kondensator wird jetzt zusätzlich parallelgeschaltet.

e) Berechne die Kapazität des Kondensators, so dass die Schaltung in Resonanz betrieben wird.

Aufgabe 3 – Komplexe Wechselstromberechnung (2 P + 2P + 1 P + 2 P + 3 P = 10 P)

Folgende Schaltung ist gegeben:


Dabei beträgt $\underline{U} = 120V$, f = 60Hz und $\underline{I} = 240mA \cdot e^{j30^{\circ}}$.

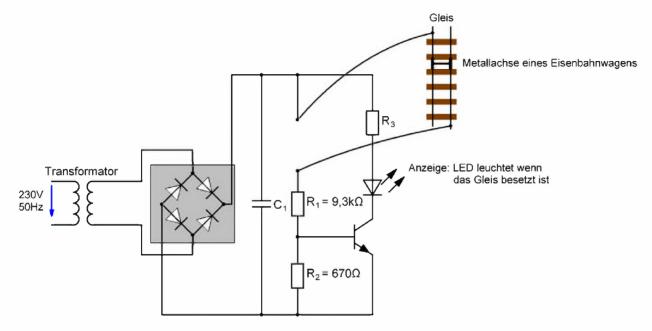
- a) Berechne den komplexen Scheinwiderstand Z der gesamten Schaltung in Exponential- und Normalform.
- b) Besitzt die Schaltung induktives oder kapazitives Verhalten? Begründe deine Antwort!
- c) Bestimme R.
- d) Berechne \underline{U}_R in Exponential- und Normalform.
- e) Berechne <u>U</u>_{LC} in Exponential- und Normalform.

<u>Aufgabe 4 – Diode</u> (2 P + 1 P + 3 P + 2 P + 2 P = 10 P)

a) Zeichne die Ersatzschaltung einer Diode. Gib alle Spannungen, Ströme und Bezeichnungen an!

Die folgende reale Diodenkennlinie ist gegeben:

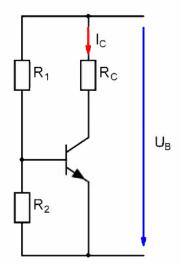
b) Aus welchem Halbleitermaterial besteht die Diode? Begründe deine Antwort.


Die Diode wird jetzt in Reihe mit einem Widerstand R = 60Ω an eine Spannungsquelle von 3V angeschlossen

- c) Zeichne die Arbeitsgerade und den Arbeitspunkt ein.
- d) Bestimme die Diodenspannung und den Diodenstrom.
- e) Berechne die im Widerstand umgesetzte Verlustleistung in mW.

Aufgabe 5 - Elektronische Schaltung

(2P+1P+1P+3P=7P)


Folgende Schaltung ist gegeben. Der Mittelwert der Spannung an C₁ beträgt 12V.

- a) Wie heißt der grau hinterlegte Teil der Schaltung? Welche Funktion hat er?
- b) Welche Funktion hat C₁?
- c) Welche Funktion hat R₃?
- d) Erkläre die Funktionsweise der Schaltung.

Aufgabe 6 – Transistor als Verstärker (6 P)

Folgende Schaltung ist gegeben:

Berechne R_1 und R_2 , wenn I_C = 35mA betragen soll bei einer Gleichstromverstärkung von 380 und einem Querstromverhältnis q=5. Die Basis-Emitterspannung soll 0,65V bei einer Betriebsspannung U_B = 24V betragen.