EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	19.09	9.23	Durée :	14:15 - 16:45	ı	Numéro candidat :	
Disciplin	ie:			Section(s):			
		Chimie		Section(s): GIG			

I. <u>Équilibres et teneurs des solutions</u> (15P)

1. Décomposition du pentachlorure de phosphore (5P)

Le pentachlorure de phosphore se décompose en dichlore gazeux et en trichlorure de phosphore dans une réaction réversible selon la réaction équilibrée suivante:

$$PCl_{5(g)} \rightleftharpoons Cl_{2(g)} + PCl_{3(g)}$$

Dans un récipient de 2 L, 30,8 g de pentachlorure de phosphore sont chauffés. Lorsque l'état d'équilibre est atteint, $c(PCl_3) = 0,050$ mol/L. Déterminez la constante d'équilibre K_C .

2. Équilibre entre le tétraoxyde de diazote et le dioxyde d'azote (2 + 2 + 1 + 4 + 1 = 10P)

Le tétraoxyde de diazote est en équilibre avec le dioxyde d'azote en fonction de la pression et de la température, selon l'équation d'équilibre suivante:

$$N_2O_{4(g)} \rightleftharpoons 2 NO_{2(g)} \qquad |\Delta H > 0$$

- a) Formulez le principe de Le Chatelier.
- b) Expliquez comment on peut augmenter le rendement en dioxyde d'azote par une modification de la température.
- c) Expliquez comment on peut influencer l'équilibre par une diminution de volume.
- d) Déterminez les concentrations molaires de tous les participants à l'équilibre à 25°C, lorsque 1 mol de tétraoxyde de diazote sont mis à réagir dans un récipient de 5 L et que $K_C = 0,174 \text{ mol/L}$.
- e) Quelle serait l'influence d'un catalyseur sur la position de l'équilibre et sur les concentrations molaires des participants à la réaction à l'équilibre ? Justifiez votre réponse.

II. Réactions acide-base et teneurs des solutions (21P)

3. Ammoniaque (3 + 5 + 1 = 9P)

Une solution d'ammoniaque a une masse volumique de 0,957 g/cm³ et un pourcentage massique de 10%.

- a) Calculez la concentration massique et la concentration molaire de cette solution d'ammoniaque.
- b) Formulez l'équation de protolyse de l'ammoniaque et, à partir de l'expression de la constante de base K_B, déduisez la formule pour le calcul du pOH d'une base faible, tout en expliquant les approximations utilisées.
- c) Calculez le pH de la solution d'ammoniaque.

4. Titrage (2 + 3 + 1 = 6P)

La *Vinaigrerie Pundel Luxembourg* produit du vinaigre à base d'alcool depuis le début du 20e siècle.

Pour déterminer la teneur en acide acétique dans un vinaigre de la marque *Pundel*, on procède à un titrage : Pour ce faire, 10 mL de vinaigre sont dilués à un volume de 250 mL. Ensuite, un échantillon de 25 mL de cette solution diluée sont titrés avec de la potasse caustique de concentration molaire $0,05 \text{ mol} \cdot L^{-1}$. Le changement de couleur de l'indicateur est observé lorsque 16 mL de la solution d'hydroxyde de potassium sont ajoutés.

- a) Calculez la concentration initiale d'acide acétique dans la solution d'échantillon diluée ainsi que la valeur pH de la même solution d'échantillon.
- b) Le point d'équivalence du titrage se trouve-t-il dans la zone de pH acide, neutre ou basique ? Justifiez à l'aide des ions présents et d'une équation de protolyse correspondante.
- c) Déduisez de vos calculs la concentration molaire de l'acide acétique dans le vinaigre de la marque *Pundel*.

5. Variation de pH (3 + 3 = 6P)

Ajouter 2,84 g d'hydrogénophosphate de sodium à 0,5 L d'une solution de dihydrogénophosphate de sodium ayant une concentration massique de 4,8 g/L.

- a) Calculez le pH du mélange si le volume de la solution reste inchangé lors de l'ajout.
- b) On ajoute au mélange 50 mL d'acide chlorhydrique d'une concentration molaire de 0,1 mol/L. Calculez la variation de pH après l'ajout de l'acide chlorhydrique.

III. Chimie organique (20P)

6. Addition électrophile (4 + 3 = 7P)

On étudie la réaction d'addition du dibrome sur le 2-méthylbut-2-ène.

- a) Formulez le mécanisme de la réaction avec des formules semi-développées et nommez le produit ainsi que toutes les particules qui interviennent.
- b) La réaction du dibrome avec le 2-chlorobut-2-ène se déroulerait-elle plus rapidement ou plus lentement que la réaction du dibrome avec le 2-méthylbut-2-ène ? Justifiez en détail.

7. Types de réactions (6 + 1 = 7P)

- a) Formulez l'équation globale avec les formules squelettiques pour la formation de :
 - i) 1-chloropropane, à partir d'un alcane;
 - ii) hexan-3-ol à partir d'un alcène;
 - iii) pentanoate d'éthyle.
- b) Lequel des réactifs ou des produits de a) réagit positivement au test de Beilstein ? Donnez le nom, la formule semi-développée et la classe de cette substance.

8. Alcool de formule inconnue (3 + 3 = 6P)

La réaction de substitution nucléophile du 1-bromo-3-méthylbutane avec la soude caustique produit l'alcool A dont la formule brute est $C_5H_{12}O$. Si on met cet alcool en contact avec de l'oxyde de cuivre (II) chaud, il se forme le produit organique B qui réagit positivement au test de Tollens.

- a) Dessinez la formule squelettique pour :
 - i) l'alcool A et nommez-le;
 - ii) un isomère de l'alcool A, qui appartient à la classe des alcools secondaires, et nommez-le.
- b) Formulez l'équation chimique de la réaction de l'alcool A avec l'oxyde de cuivre (II) à l'aide de formules semi-développées. Indiquez tous les nombres d'oxydation pertinents et nommez le produit organique B.

IV. Matières plastiques (4P)

9. Matières plastiques (2,5 + 1,5 = 4P)

Les macromolécules produites synthétiquement, appelées matières plastiques, sont utilisées dans de nombreux domaines différents de la vie quotidienne.

a) En fonction de leurs propriétés, les matières plastiques sont classées en trois catégories différentes. Indiquez les noms de ces trois catégories et faites un croquis de la structure moléculaire de chaque catégorie de plastique.

Acide butane-1,4-dioïque

$$H - O - CH_2 - CH_2 - O - H$$

Éthane-1,2-diol

b) Une matière plastique est obtenue par polycondensation entre les deux monomères représentés à gauche, à savoir l'acide butane-1,4-dioïque et l'éthane-1,2-diol .

Donnez l'équation de réaction globale avec les formules semi-développées et nommez le type de polymère.

pK _A	acide		b	ase correspondante	рКв
P	acide perchlorique	HClO ₄	ClO ₄ -	ion perchlorate	
oto.	acide hydriodique	HI	ŀ	ion iodure	nct
lyse	acide bromhydrique	HBr	Br ⁻	ion bromure	ine
CON	acide chlorhydrique	HCl	Cl-	ion chlorure	prot
Protolyse complète	acide sulfurique	H ₂ SO ₄	HSO ₄ -	ion hydrogénosulfate	Aucune protolyse
e e	acide nitrique	HNO ₃	NO ₃ -	ion nitrate	T Õ
	ion oxonium	H ₃ O ⁺	H₂O	eau	
1,92	ion hydrogénosulfate	HSO ₄ -	SO ₄ ²⁻	ion sulfate	12,08
2,13	acide phosphorique	H ₃ PO ₄	H ₂ PO ₄ -	ion dihydrogénophosphate	11,87
2,22	ion hexaqua-fer(III)	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	ion pentaqua-hydroxo-fer(III)	11,78
3,14	acide fluorhydrique	HF	F-	ion fluorure	10,86
3,35	acide nitreux	HNO ₂	NO ₂ -	ion nitrite	10,65
3,75	acide formique (acide méthanoïque)	нсоон	HCOO-	Ion formiate (méthanoate)	10,25
4,75	acide acétique (acide éthanoïque)	CH₃COOH	CH₃COO-	ion acétate (éthanoate)	9,25
4,85	ion hexaqua-aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	ion pentaqua-hydroxo-aluminium	9,15
6,52	acide carbonique	H ₂ CO ₃	HCO ₃ -	ion hydrogénocarbonate	7,48
6,92	acide sulfhydrique	H ₂ S	HS⁻	ion hydrogénosulfure	7,08
7,00	ion hydrogénosulfite	HSO ₃ -	SO ₃ ²⁻	ion sulfite	7,00
7,20	ion dihydrogénophosphate	H ₂ PO ₄ -	HPO ₄ ²⁻	ion hydrogénophosphate	6,80
9,25	ion ammonium	NH ₄ ⁺	NH ₃	ammoniaque	4,75
9,40	acide cyanhydrique	HCN	CN ⁻	ion cyanure	4,60
9,60	ion hexaqua-zinc(II)	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H ₂ O) ₅] ²⁺	ion pentaqua-hydroxo-zinc(II)	
10,40	ion hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	ion carbonate	3,60
12,36	ion hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	ion phosphate	1,64
13,00	ion hydrogénosulfure	HS ⁻	S ²⁻	ion sulfure	1,00
	eau	H ₂ O	OH-	ion hydroxyde	
Au	éthanol	CH ₃ CH ₂ OH	CH₃CH₂O⁻	ion éthanolate	
cune	méthanol	CH₃OH	CH₃O⁻	ion méthanolate	Pro
Aucune protolyse	ammoniaque	NH ₃	NH ₂ -	ion amide	Protolyse
otoly	ion hydroxyde	OH-	O ²⁻	ion oxyde	/se ète
yse	hydrogène	H ₂	H ⁻	ion hydrure	

indicateur coloré	forme acide	zone de virage	forme basique	рК _А
bleu de thymol	rouge	1,2 - 2,8	jaune	1,7
orange de méthyle	orange	3,1 – 4,4	jaune	3,4
vert de bromocrésol	jaune	3,8 - 5,4	bleu	4,7
rouge de méthyle	rouge	4,2 - 6,3	jaune	5,0
lackmus	bleu	5,0 - 8,0	rouge	6,5
bleu de bromothymol	jaune	6,0 - 7,7	bleu	7,1
bleu de thymol	jaune	8,0 - 9,6	bleu	8,9
phénolphtaléine	incolore	8,2 - 10	rouge	9,4
thymolphtaléine	incolore	9,3 - 10,5	bleu	10,0
Jaune d'alizarine R	jaune	10,1 – 12,1	rouge	11,2

Tableau périodique des éléments chimiques

1	ΙA															VIII A	2
Н																	He
	II A											III A	IV A	VA	VI A	VII A	
1,0079	4																4,0026
												5 D	6	7	8	9	
Li	Be											В	C	N	О	F	Ne
6,941	9,01218											10,81	12,011	14,0067	15,9994	18,9984	20,179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
2,98977	24,305	III B	IV B	VВ	VI B	VII B	VIII B	VIII B	VIII B	IB	II B	26,98154	28,086	30,97376	32,06	35,453	39,948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	40.00														-0.04		
39,098 37	40,08 38	44,9559	47,9	50,9414 41	51,996 42	54,938	55,847	58,9332 45	58,71 46	63,546 47	65,38 48	69,72 49	72,59 50	74,9216 51	78,96 52	79,904 53	83,8 54
		39				43	44 D										
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85,4578	87,62	88,9059	91,22	92,9064	95,94	98,9062	101,07	102,9055	106,4	107,868	112,4	114,82	118,69	121,75	127,6	126,9045	131,3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
32,9054	137,34	138,9055	178,49	180,9479	183,85	186,2	190,2	192,22	195,09	196,9665	200,59	204,37	207,2	208,9804	209	210	222
87	88	89	104	105	106	107	108	109	,	,	,	, ,	.,	,			
Fr	Ra	Ac	§	§	§	§	§	§									
223	226,0254	227,03	261	262	263	262	265	267									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
			-	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			-	140,12	140,9077	144,24	145	150,4	151,96	157,25	158,9254	162,5	164,9304	197,26	168,9342	173,04	174,97
			-	90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				232,0381	221 0250	238,029	237,0482	244	243	247	249	251	254	257	258	259	260