

Gleichgewichte und Gehaltsangaben von Lösungen (15 P.)

1. Gleichgewichtsreaktion (1+1+4=6 P.)

Wasserstoff und Kohlenstoffdioxid reagieren in einer Gleichgewichtsreaktion zu Wasserdampf und Kohlenstoffmonoxid. Die Reaktion findet bei 700 °C in einem 1 L Kolben statt.

- **1.1.** Formulieren Sie die Reaktionsgleichung und das Massenwirkungsgesetz dieser Reaktion.
- **1.2.** Wie verändert sich das Gleichgewicht, wenn man Kohlenstoffmonoxid aus dem Reaktionsgemisch entfernt? Begründen Sie ihre Antwort.
- **1.3.** Es werden 0,75 mol Wasserstoff und 0,75 mol Kohlenstoffdioxid zur Reaktion gebracht. Nach Einstellen des chemischen Gleichgewichts befinden sich 0,43 mol Kohlenstoffdioxid im Gasgemisch. Berechnen Sie die Stoffmengenkonzentrationen aller Reaktionsteilnehmer im Gleichgewicht sowie die Gleichgewichtskonstante K_C bei 700 °C.

2. Zersetzung von Phosgen (4+1,5+1,5=7 P.)

Phosgen ist ein farbloses Gas und besitzt die Summenformel COCl₂. Bei der Zersetzung dieser Verbindung entsteht Kohlenstoffmonoxid und Chlor. Diese Reaktion wird in einem 0,5 L Reaktionsgefäß bei 527 °C durchgeführt.

Die Gleichgewichtskonstante K_C dieser **Zersetzung** beträgt 4,63 · 10⁻³ mol/L.

- **2.1.** Berechnen Sie die Gleichgewichtskonzentration von Phosgen, wenn man 0,15 mol Chlor und 0,15 mol Kohlenstoffmonoxid im Reaktionsgefäß vermischt.
- **2.2.** Welchen Einfluss hat eine Volumenverringerung auf diese Gleichgewichtsreaktion und auf die Gleichgewichtskonstante K_c? Begründen Sie ihre Aussage.
- **2.3.** Formulieren Sie das Massenwirkungsgesetz für die **Bildung** von Phosgen bei 527 °C und berechnen Sie die Gleichgewichtskonstante K'_C .

3. Gehaltsangaben einer Kaliumhydroxidlösung (2 P.)

100 g einer konzentrierten Kaliumhydroxidlösung enthalten 16,8 g Kaliumhydroxid. Die Dichte der Lösung beträgt 1,155 g/cm³.

Berechnen Sie die Massen- und die Stoffmengenkonzentration dieser Kaliumhydroxidlösung.

Säure-Base-Reaktionen (20 P.)

4. pH-Wert-Berechnungen (3+3=6 P.)

- **4.1.** Zu 5 mL einer 0,1 mol/L Calciumhydroxidlösung werden 30 mL einer 0,01 mol/L Kaliumhydroxidlösung gegeben. Berechnen Sie den pH-Wert der entstandenen Lösung.
- 4.2. Ein Natriumhydroxid-Plätzchen wird in einem 100 mL Messkolben mit destilliertem Wasser gelöst. Nach dem Lösevorgang wird der Messkolben mit destilliertem Wasser aufgefüllt. 20 mL dieser Lösung werden durch eine 0,1 mol/L Salzsäure unter Verwendung eines Indikators titriert. Der Verbrauch an Salzsäure am Äquivalenzpunkt beträgt 16,5 mL. Bestimmen Sie die Stoffmengenkonzentration und den pH-Wert der Natronlauge, sowie die Masse des Natriumhydroxid-Plätzchens.

5. Herstellung einer Lösung (3 P.)

Welche Masse an Natriumacetat muss zu 500 mL einer Ethansäurelösung der Stoffmengenkonzentration c = 0,5 mol/L gegeben werden, damit ein pH-Wert von 5,0 erreicht wird. Die Volumenveränderung wird dabei vernachlässigt.

6. Säure-Base-Reaktionen in Salzlösungen (4+2=6 P.)

Formulieren Sie die Gleichung für das Auflösen in Wasser der folgenden Salze. Bestimmen Sie und begründen Sie anhand der entsprechenden Protolysegleichungen den Charakter der entstandenen wässrigen Salzlösung.

- 6.1. Ammoniumhydrogensulfat
- 6.2. Zink(II)-nitrat

7. Titration (1+2+2=5 P.)

25 mL einer Ammoniaklösung (c = 0.1 mol/L) werden mit Salzsäure (c = 0.1 mol/L) titriert.

- **7.1.** Berechnen Sie den pH-Wert der Probelösung vor der Titration.
- **7.2.** Berechnen Sie den pH-Wert am Halbäquivalenzpunkt nach Zugabe von 12,5 mL Maßlösung und formulieren Sie die Reaktionsgleichung der Titration.
- **7.3.** Begründen Sie den pH-Wert am Äquivalenzpunkt anhand des Säure-Base-Verhaltens der in der Lösung enthaltenen Ionen. Formulieren Sie die entsprechende Protolysegleichung.

Organische Chemie (25 P.)

8. Organik (1,5+2,5+1+3=8 P.)

- **8.1.** Definieren Sie den Begriff "Isomere". Geben Sie ein Beispiel an, jeweils mit einer Summenformel und einer Halbstrukturformel.
- **8.2.** Geben Sie die Halbstrukturformeln der folgenden 3 Verbindungen an. Welche dieser 3 Verbindungen besitzt die niedrigste Siedetemperatur? Begründen Sie ihre Antwort.
 - 2-Methylhexan
 - 3,3-Dimethylpentan
 - *n*-Heptan
- **8.3.** Welche dieser 3 Verbindungen (Frage 8.2) besitzt die höchste Viskosität? Begründen Sie Antwort.
- **8.4.** Formulieren Sie mithilfe von Halbstrukturformeln die Reaktionsgleichung (ohne Mechanismus) für die Reaktion unter Lichteinfluss von Chlormethan mit Chlor. Benennen Sie den Mechanismus und alle Reaktionsprodukte.

9. Alkohole (4+3+3=10 P.)

Drei Alkanole mit der Summenformel $C_4H_{10}O$ werden untersucht und zunächst mit den Buchstaben A, B und C bezeichnet. Alle drei Alkanole reagieren mit heißem Kupfer(II)-oxid. Aus A und C erhält man zwei verschiedene Aldehyde. Aus B erhält man ein Alkanon. Das Alkanol A siedet bei 118 °C, Alkanol B bei 100 °C und Alkanol C bei 108 °C.

- **9.1.** Ordnen Sie den Buchstaben A, B und C die Halbstrukturformeln der Alkanole zu und benennen Sie diese. Begründen Sie die vorgenommene Zuordnung.
- **9.2.** Erklären Sie, wie und weshalb sich der Siedepunkt von Alkanol A mit den Siedepunkten von Propansäure und *n*-Butanal unterscheidet. Die Stoffe haben ähnliche molare Massen.
- **9.3.** Formulieren Sie eine Reaktionsgleichung mit Halbstrukturformeln für die Reaktion des Alkanols B mit Kupfer(II)-oxid und zeigen Sie anhand der Oxidationszahlen, dass es sich um eine Redoxreaktion handelt.

10. Reaktion von 2-Methylbut-1-en mit Bromwasserstoff (5+2=7 P.)

- **10.1.** Formulieren Sie den Reaktionsmechanismus mithilfe der Halbstrukturformeln und benennen Sie die zwei Reaktionsprodukte. Benennen Sie den Reaktionstyp dieser Reaktion.
- **10.2.** Welches der beiden möglichen Produkte wird bevorzugt gebildet? Begründen Sie ihre Aussage anhand der Zwischenprodukte des Reaktionsmechanismus.

pKs	Säure		Korrespondierende Base					
Vollständige Protonenabgabe	Perchlorsäure	HClO ₄	ClO ₄ ⁻	Perchlorat-Ion	e Ifnahme			
	Iodwasserstoffsäure	НІ	I_	Iodid-Ion				
	Bromwasserstoffsäure	HBr	Br ⁻	Bromid-Ion				
	Salzsäure	HCl	СГ	Chlorid-Ion	Keine Protonenaufnahme			
	Schwefelsäure	H ₂ SO ₄	HSO ₄	Hydrogensulfat-Ion				
	Oxonium-Ion	$H_3O^+ (H^+ + H_2O)$	H ₂ O	Wasser				
	Salpetersäure	HNO ₃	NO ₃	Nitrat-Ion				
1,88	Schwefelige Säure	H_2SO_3	HSO ₃ ⁻	Hydrogensulfit-Ion	12,12			
1,92	Hydrogensulfat-Ion	HSO ₄	SO ₄ ²⁻	Sulfat-Ion	12,08			
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄	Dihydrogenphosphat-Ion	11,87			
2,22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11,78			
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F^{-}	Fluorid-Ion	10,86			
3,35	Salpetrige Säure	HNO_2	$\mathrm{NO_2}^-$	Nitrit-Ion	10,65			
3,75	Ameisensäure (Methansäure)	НСООН	HCOO ⁻	Formiat-Ion (Methanoat-Ion)	10,25			
4,75	Essigsäure (Ethansäure)	СН₃СООН	CH₃COO¯	Acetat-Ion (Ethanoat-Ion)	9,25			
4,85	Hexaqua-Aluminium-Ion	$[Al(H_2O)_6]^{3+}$	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9,15			
6,52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃ ⁻	Hydrogencarbonat-Ion	7,48			
6,92	Schwefelwasserstoff Säure	H_2S	HS ⁻	Hydrogensulfid-Ion	7,08			
7,00	Hydrogensulfit-Ion	HSO ₃	SO ₃ ²⁻	Sulfit-Ion	7,00			
7,20	Dihydrogenphosphat-Ion	$\mathrm{H_2PO_4}^-$	HPO ₄ ^{2–}	Hydrogenphosphat-Ion	6,80			
9,25	Ammonium-Ion	NH ₄ ⁺	NH ₃	Ammoniak	4,75			
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN ⁻	Cyanid-Ion	4,60			
9,60	Hexaqua-Zink(II)-Ion	$[Zn(H_2O)_6]^{2+}$	$\left[\operatorname{Zn}(\operatorname{OH})(\operatorname{H}_2\operatorname{O})_5\right]^+$	Pentaqua-hydroxo-Zink(II)-Ion	4,40			
10,40	Hydrogencarbonat-Ion	HCO ₃	CO ₃ ²⁻	Carbonat-Ion	3,60			
12,36	Hydrogenphosphat-Ion	HPO ₄ ²⁻	PO ₄ ³⁻	Phosphat-Ion	1,64			
13,00	Hydrogensulfid-Ion	HS ⁻	S ²⁻	Sulfid-Ion	1,00			
e e	Wasser	H ₂ O	ОН_	Hydroxid-Ion	ndige en- me			
Keine Protonen- abgabe	Methanol	СН ₃ ОН	CH ₃ O ⁻	Methanolat-Ion	Vollständige Protonen- aufnahme			
Pr	Ethanol	CH ₃ CH ₂ OH	CH₃CH₂O⁻	Ethanolat-Ion	Vo Pr au			

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base
Thymolblau	rot	1,2 - 2,8	gelb
Methylorange	rot	3,0 - 4,4	gelb-orange
Bromkresolgrün	geIb	3,8 - 5,4	blau
Methylrot	rot	4,2 - 6,2	gelb
Lackmus	rot	5,0 - 8,0	blau
Bromthymolblau	geIb	6,0 - 7,6	blau
Thymolblau	geIb	8,0 - 9,6	blau
Phenolphtha lein	farblos	8,2 - 10,0	purpur
Thymolphthalein	farblos	9,3 - 10,5	blau
Alizaringelb R	gelb	10,1 - 12,1	rot

Haupt -		Das Periodensystem der Elemente									gruppen								
	1 IA	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 VIIIA	
1	1,0 1 H																	4,0 2 He	1
2	6,9 3 Li	^{9,0} 4 Be		Nebengruppen										12,0 6 C	14,0 7 N	16,0 8 O	19,0 9 F	^{20,2} ₁₀ Ne	2
3	23,0 11 Na	^{24,3} ₁₂ Mg	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	27,0 13 Al	28,1 14 Si	31,0 15 P	32,1 16 S	35,5 17 Cl	39,9 18 Ar	3
4	39,1 19 K	^{40,1} ₂₀ Ca	45,0 21 SC	47,9 22 Ti	50,9 23 V	^{52,0} ₂₄ Cr	54,9 25 Mn	55,8 26 Fe	58,9 27 Co	58,7 28 Ni	63,5 29 Cu	65,4 30 Zn	^{69,7} 31 Ga	72,6 32 Ge	74,9 33 As	^{79,0} 34 Se	^{79,9} 35 Br	83,8 36 Kr	4
5	85,5 37 Rb	87,6 38 Sr	88,9 39 Y	91,2 40 Zr	92,9 41 Nb	95,9 42 Mo	99 43 Tc	101,1 44 Ru	102,9 45 Rh	106,4 46 Pd	107,9 47 Ag	112,4 48 Cd	114,8 49 ln	118,7 50 Sn	121,8 51 Sb	127,6 52 Te	126,9 53	131,3 54 Xe	5
6	132,9 55 Cs	137,3 56 Ba	57 bis 71 La-Lu	178,5 72 Hf	180,9 73 Ta	183,8 74 W	186,2 75 Re	190,2 76 Os	192,2 77 l r	195,1 78 Pt	197,0 79 Au	200,6 80 Hg	204,4 81 TI	^{207,2} ₈₂ Pb	209,0 83 Bi	209 84 Po	210 85 At	222 86 Rn	6
7	223 87 Fr	226 88 Ra	89 bis 103 Ac-Lr	261 104 Rf	262 105 Db	263 106 Sg	262 107 Bh	265 108 Hs	268 109 Mt	269 110 Uun	272 111 Uuu	277 112 Uub		289 114 Uuq		289 116 Uuh		293 118 Uuo	7
	Lanthanoide			138,9 57 La	140,1 58 Ce	140,9 59 Pr	144,2 60 Nd	147 61 Pm	150,4 62 Sm	152,0 63 Eu	157,3 64 Gd	158,9 65 Tb	162,5 66 Dy	164,9 67 Ho	167,3 68 Er	168,9 69 Tm	173,0 70 Yb	175,0 71 Lu	
	Actinoide			227 89 Ac	232 90 Th	231 91 Pa	238 92 U	237 93 Np	244 94 Pu	243 95 Am	247 96 Cm	247 97 Bk	251 98 Cf	252 99 Es	257 100 Fm	258 101 Md	259 102 No	260 103 Lr	