

I. Gleichgewichte und Gehaltsangaben von Lösungen (15P.)

1. <u>Dampfreformierung (4+2+2+4+2+1=15P.)</u>

Wasserstoff wird im industriellen Maßstab größtenteils durch Dampfreformierung hergestellt, ein Verfahren, das von Carl Bosch in den 1920er Jahren entwickelt wurde. Bei diesem Prozess reagiert Methangas mit Wasser zu Kohlenstoffmonoxid und Wasserstoff.

$$CH_{4(g)} + H_2O_{(g)} \rightleftharpoons 3H_{2(g)} + CO_{(g)}$$
 | endotherm

- a. Man gibt 10 mol CH_4 und 30 mol H_2O in einen Behälter von 10 L und erhitzt auf 750°C. Nachdem sich das Gleichgewicht eingestellt hat, befinden sich 8,5 mol CO im Reaktionsgemisch. Berechnen Sie die Konzentrationen von CH_4 , H_2O , H_2 und CO im Gleichgewicht.
- b. Berechnen Sie die Gleichgewichtskonstante K_c bei 750°C.
- c. Welchen Einfluss hat eine Druckerhöhung auf die Wasserstoffausbeute? Begründen Sie Ihre Antwort.

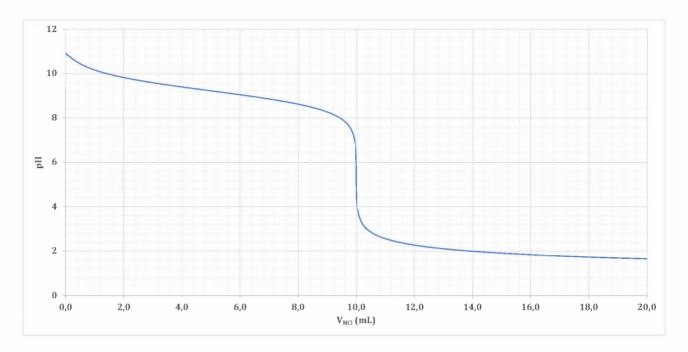
Anschließend reagiert das Kohlenstoffmonoxid mit Wasser in der sogenannten Wassergas-Shift-Reaktion zu Kohlenstoffdioxid und Wasserstoff. Bei 400°C beträgt die Gleichgewichtskonstante K_c = 12.

$$CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$$
 | exotherm

- d. Man gibt 10 mol CO und 12 mol H_2O in einen Behälter und erhitzt auf 400° C. Berechnen Sie die Stoffmengen aller beteiligten Stoffe im Gleichgewicht.
- e. Welchen Einfluss hat eine Temperaturerhöhung auf die Position des Gleichgewichts? Begründen Sie Ihre Antwort.

f. Bei der Wassergas-Shift-Reaktion kann ein Eisen(III)-oxid-Katalysator eingesetzt werden. Wie verändert der Einsatz eines Katalysators die Position des Gleichgewichts? Begründen Sie Ihre Antwort.

II. Säure-Base-Reaktionen und Gehaltsangaben von Lösungen (22P.)


2. Puffersysteme (3+3+3+1=10P.)

In der Biochemie kann zur Reinigung von Zellkulturen eine Lösung mit einem pH=7,4 eingesetzt werden, die Kalium**di**hydrogenphosphat und Natriumhydrogenphosphat enthält.

- a. Leiten Sie die Formel zur Berechnung des pH-Werts der Lösung her, ausgehend von der Säurekonstante K_s vom Dihydrogenphosphat-Ion.
- b. 100 mL Lösung enthalten 0,01 mol Natriumhydrogenphosphat, berechnen Sie die Stoffmenge an Kaliumdihydrogenphosphat, damit die Lösung einen pH-Wert von 7,4 hat.
- c. Zu 100 mL der Lösung wird 1 mL NaOH (c = 1 mol/L) zugegeben. Berechnen Sie die Veränderung des pH-Werts.
- d. Wie verändert sich der pH-Wert, wenn 100 mL der Lösung auf 1L verdünnt werden? Begründen Sie Ihre Antwort.

3. <u>Titration (1+1+2+2+3+1+2=12P.)</u>

40 mL einer alkalischen Lösung A werden auf 100 mL verdünnt. Eine Probe von 25 mL der verdünnten Lösung wird mit HCl (c = 0.1 mol/L) titriert.

- a. Enthält die Lösung A eine schwache oder eine starke Base? Begründen Sie Ihre Antwort.
- b. Bestimmen Sie graphisch den Äquivalenzpunkt.
- c. Bestimmen Sie graphisch den Halbäquivalenzpunkt. Um welche Base könnte es sich handeln? Begründen Sie Ihre Antwort.
- d. Berechnen Sie die Stoffmengenkonzentration der Lösung A.
- e. Leiten Sie, ausgehend von der Basenkonstante K_B einer schwachen Base, die Formel zur Berechnung des pH-Werts der Lösung A her. Geben Sie die entsprechenden Näherungen an und begründen Sie diese.
- f. Berechnen Sie den pH-Wert der Lösung A.
- g. Begründen Sie den pH-Wert am Äquivalenzpunkt anhand der in der Lösung vorhandenen Ionen.

III. Organische Chemie (23P.)

4. Verbindungsklassen und ihre Eigenschaften (5+5+3+2=15P.)

- a. Geben Sie die Halbstrukturformeln **und** Skelettformeln folgender Moleküle:
 - Propansäure
 - Butan-1-ol
 - Pentan
 - 2,2-Dimethylpropan
 - Butanal
- b. Ordnen Sie die Moleküle aus a. nach steigender Siedetemperatur. Begründen Sie Ihre Antwort.
- c. Für eines der Moleküle aus a. fällt die Tollensprobe positiv aus. Geben Sie die Teilgleichungen für Oxidation und Reduktion sowie die Gesamtgleichung der Reaktion an. Geben Sie die sich verändernden Oxidationszahlen an.
- d. Bei der Reaktion von Propansäure mit Butan-1-ol entsteht eine Substanz, die unter anderem in Äpfeln vorkommt. Geben Sie die Reaktionsgleichung und benennen Sie das Produkt.

5. Additionsreaktionen (6+2=8P.)

Bei der Reaktion von Bromwasserstoff mit Propen entstehen zwei Produkte.

- a. Formulieren Sie den ausführlichen Reaktionsmechanismus für diese Reaktion und benennen Sie die Produkte. Erklären Sie, warum ein Haupt- und ein Nebenprodukt gebildet wird.
- b. Vergleichen Sie die Reaktionsgeschwindigkeit der Reaktion aus a. mit der Addition von Bromwasserstoff auf Chlorethen. Begründen Sie Ihre Antwort.

pKs	Säure		Korrespondierende Base			
Vollständige Protonenabgabe	Perchlorsäure	HClO ₄	ClO ₄	Perchlorat-Ion	me	
	Iodwasserstoffsäure	ні	I_	Iodid-Ion		
	Bromwasserstoffsäure	HBr	Br ⁻	Bromid-Ion	Keine Krotonenaufnahme	
	Salzsäure	HCl	CF	Chlorid-Ion		
	Schwefelsäure	H ₂ SO ₄	HSO ₄	Hydrogensulfat-Ion	roton	
	Oxonium-Ion	$H_3O^+ (H^+ + H_2O)$	H ₂ O	Wasser	d	
	Salpetersäure	petersäure HNO ₃ NO ₃ Nitrat-Ion		Nitrat-Ion		
1,88	Schwefelige Säure	H ₂ SO ₃	HSO ₃ ⁻	Hydrogensulfit-Ion	12,12	
1,92	Hydrogensulfat-Ion	HSO ₄	SO ₄ ²⁻	Sulfat-Ion	12,08	
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄	Dihydrogenphosphat-Ion	11,87	
2,22	Hexaqua-Eisen(III)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11,78	
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F ⁻	Fluorid-Ion	10,86	
3,35	Salpetrige Säure	HNO ₂	NO_2^-	Nitrit-Ion	10,65	
3,75	Ameisensäure (Methansäure)	нсоон	HCOO ⁻	Formiat-Ion (Methanoat-Ion)	10,25	
4,75	Essigsäure (Ethansäure)	СН₃СООН	CH₃COO⁻	Acetat-Ion (Ethanoat-Ion)	9,25	
4,85	Hexaqua-Aluminium-Ion	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-Ion	9,15	
6,52	Kohlensäure	$H_2CO_3 / H_2O + CO_2$	HCO ₃ ⁻	Hydrogenearbonat-Ion	7,48	
6,92	Schwefelwasserstoff Säure	H ₂ S	HS ⁻	Hydrogensulfid-Ion	7,08	
7,00	Hydrogensulfit-Ion	HSO ₃ ⁻	SO ₃ ² -	Sulfit-Ion	7,00	
7,20	Dihydrogenphosphat-Ion	$\mathrm{H_2PO_4}^-$	HPO ₄ ² -	Hydrogenphosphat-Ion	6,80	
9,25	Ammonium-Ion	NH4 ⁺	NH ₃	Ammoniak	4,75	
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN ⁻	Cyanid-Ion	4,60	
9,60	Hexaqua-Zink(II)-Ion	$[Zn(H_2O)_6]^{2+}$	$\left[Zn(OH)(H_2O)_5\right]^+$	Pentaqua-hydroxo-Zink(II)-Ion	4,40	
10,40	Hydrogencarbonat-Ion	HCO ₃ ⁻	CO ₃ ² –	Carbonat-Ion	3,60	
12,36	Hydrogenphosphat-Ion	HPO ₄ ² -	PO ₄ ³⁻	Phosphat-Ion	1,64	
13,00	Hydrogensulfid-Ion	HS ⁻	S ²⁻	Sulfid-Ion	1,00	
е <u>і</u>	Wasser	H ₂ O	OH_	Hydroxid-Ion	ndige en- me	
Keine Protonen- abgabe	Methanol	СН3ОН	CH₃O [−]	Methanolat-Ion	Vollständige Protonen- aufnahme	
P. B	Ethanol	CH₃CH₂OH	CH₃CH₂O⁻	Ethanolat-Ion	Vo. Pr	

Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base	
Thymolblau	rot	1,2 - 2,8	gelb	
Methylorange	rot	3,0 - 4,4	gelb-orange	
Bromkresolgrün	geIb	3,8 - 5,4	blau	
Methylrot	rot	4,2 - 6,2	gelb	
Lackmus	rot	5,0 - 8,0	blau	
Bromthymolblau	geIb	6,0 - 7,6	blau	
Thymolblau	geIb	8,0 - 9,6	blau	
Phenolphthalein	farblos	8,2 - 10,0	purpur	
Thymolphthalein	farblos	9,3 - 10,5	blau	
Alizaringelb R	geIb	10,1 - 12,1	rot	

	VIIIA	4,0 2 He 7	20,2 10 Ne 2	^{39,9} 3	83,8 36 Kr	131,3 54 Xe 5	222 86 Rn <i>6</i>	293 7	175,0 71 Lu	260 13 Lr
	17 VIIA 18 VIIIA	4 2 h	19,0 20 9 F 10 I	35,5 36 17 CI 18	79,9 83 35 Br 36	126,9 13 53 54 2	210 2 85 At 86 I	118		252 257 258 259 260 89 ES 100 Fm ₁₀₁ Md ₁₀₂ No ₁₀₃ Lr
,	71 NIA 17			32,1 35 16 S 17	79,0 79 34 Se 35		209 2. 84 Po 85.	289 116 Uuh	167,3 168,9 173,0 68 Er 69 Tm 70 Yb	258 24 1 Md 102
gruppen					S 34 6	4,		28	8 169 1	m 101
В	15 VA		14,0 7 N	31,0 15 P	74,9 33 AS	121,8 51 Sb	209,0 83 Bi			257 100 Fr
	14 IVA		12,0 6 C	28,1 14 Si	72,6 32 Ge	118,7 50 Sn	207,2 82 Pb	289 114 Uuq	164,9 67 Ho	252 99 ES
	13 IIIA		10,8 5 B	27,0 13 AI	65,4 69,7 72,6 30 Zn 31 Ga 32 Ge	114,8 49 In	204,4 81 TI		162,5 66 Dy	251 98 Ç
				12 118	65,4 30 Zn	107,9 112,4 47 Ag 48 Cd	200,6 80 Hg	277 112 Uub	158,9 65 Tb	247 97 BK
ø				11 18	63,5 29 Cu	107,9 47 Ag	197,0 79 Au	272 111 Uuu	157,3 64 Gd	247 96 Cm
men				9 VIIIB 10 VIIIB	58,7 28 Ni	106,4 46 Pd	195,1 78 Pt	269 110 Uun	152,0 63 Eu	243 95 Am
Das Periodensystem der Elemente				9 VIIIB	58,9 27 Co	95,9 99 101,1 102,9 106,4 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd	192,2 77 r	263 265 268 269 272 277 106 Sg 107 Bh 108 Hs 109 Mt 110 Uun 111 Uuu 112 Uub	144,2 147 150,4 152,0 157,3 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd	238 237 244 243 247 247 92 U 93 Np 94 Pu 95 Am 96 Cm 97 Bk
еш ф			перреп	8 VIIIB	55,8 26 Fe	101,1 44 Ru	190,2 76 Os	265 108 HS	147 61 Pm	237 93 Np
nsys			Nebengruppen	7 VIIB	54,9 55,8 25 Mn 26 Fe	99 43 TC	186,2 190,2 75 Re 76 Os	262 107 Bh	144,2 60 Nd	
riode				8IN 9	52,0 24 Cr	95,9 42 Mo	183,8 74 W	263 106 Sg	140,9 59 Pr	231 91 Pa
as Pe				5 1/8	50,9 23 V		180,9 73 Ta			
Õ				4 IVB		91,2 92,9 40 Zr 41 Nb	178,5 72 Hf	261 104 Rf	138,9 140,1 57 La 58 Ce	227 232 89 Ac 90 Th
				3 1118	45,0 21 SC	88,9 39 Y	57 bis 71 La-Lu	89 bis 103 Ac-Lr	ide	te
pt -	2 IIA		^{9,0} 4 Be	23,0 24,3 11 Na 12 Mg	40,1 45,0 47,9 20 Ca 21 Sc 22 Ti		137,3 56 Ba	223 226 89 bis 103 261 262 87 Fr 88 Ra Ac-L 104 Rf 105 Db	Lanthanoide	Actinoide
Haupt -	7 IA	1,0 H	6,9 3 Li	23,0 11 Na	39,1 19 K	85,5 87,6 37 Rb 38 Sr	132,9 55 Cs	223 87 Fr	Lan	A
		1	2	3	4	5	9			