EXAMEN DE FIN D'ÉTUDES SECONDAIRES GÉNÉRALES Sessions 2023 — QUESTIONNAIRE ÉCRIT

Date :	17	.05.23	Durée :	08:15 - 10:45	Numéro candidat :
Disciplin	e :			Section(s):	
		Chi	mie		GA3D

1. Massenwirkungsgesetz (15P)

1.1. Stoßmodell und Gleichgewichtskonstante (2+4+2 = 8P)

- 1.1.1. Erläutern Sie den Begriff "dynamisches Gleichgewicht". (2P)
- 1.1.2. Nennen Sie zwei Faktoren, die einen Einfluss auf die Reaktionsgeschwindigkeit haben und erläutern Sie diesen anhand des Stoßmodells. (4P)
- 1.1.3. Erstellen Sie das Massenwirkungsgesetz für folgende Reaktion und geben Sie die Einheit der Gleichgewichtskonstante an. (2P)

$$4 HCl + O_2 \rightleftharpoons 2Cl_2 + 2NO + 2 H_2O$$

1.2. Essigsäure (4+1+2= 7P)

(2mol) Essigsäure (CH₃COOH) reagiert mit (5mol) Ethanol (C₂H₅OH) in einer umkehrbaren Reaktion zu Essigsäureethylester (CH₃COOC₂H₅) und Wasser.

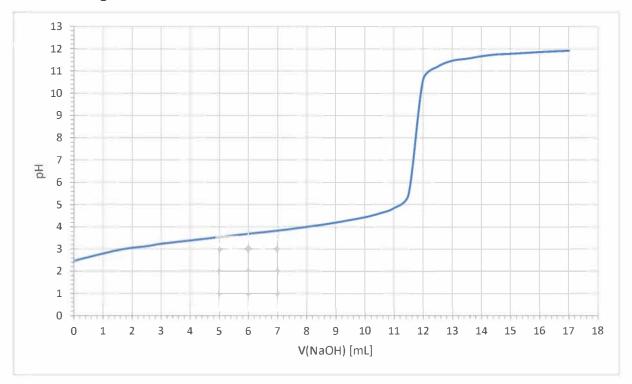
- 1.2.1. Berechnen Sie die Stoffmengen aller beteiligten Stoffe im Gleichgewicht $(K_C = 4)$. (4P)
- 1.2.2. Erläutern Sie, wie sich K_C bei einer Erhöhung des Drucks verändert. (1P)
- 1.2.3. Erläutern Sie, wie sich die Ausbeute an Ester erhöhen lässt, ohne die Eduktkonzentrationen zu erhöhen. (2P)

2. Säuren und Basen (20P)

2.1. Natriumhydrogenphosphat (2+2 = 4P)

Es werden 12g Natriumdihydrogenphosphat (NaH₂PO₄) in 100mL Wasser gelöst.

- 2.1.1. Bestimmen Sie den Charakter der Lösung. Begründen Sie ihre Antwort. (2P)
- 2.1.2. Berechnen Sie den pH-Wert der Lösung. (2P)


2.2. Essigsäure / Acetat (2+2+4 = 8P)

500mL einer wässrigen Lösung enthalten 2,3 mol Essigsäure und 1,4 mol Acetat.

- 2.2.1. Berechnen Sie den pH-Wert der Lösung. (2P)
- 2.2.2. Die Lösung wird mit destilliertem Wasser auf 2L verdünnt. Berechnen Sie die Änderung des pH-Wertes. (2P)
- 2.2.3. Der anfänglichen Lösung werden 10mL Natronlauge (NaOH, c = 3M) zugesetzt. Berechnen Sie den neuen pH-Wert der Lösung. (4P)

2.3. Titration (2+3+2+1=8P)

25 mL einer unbekannten Säure wurden mit Natronlauge (NaOH, 0,2M) titriert. Dabei wurde folgende Titrationskurve erhalten.

- 2.3.1. Bestimmen Sie graphisch den Äquivalenzpunkt und den Halbäquivalenzpunkt.(2P)
- 2.3.2. Um welche Säure handelt es sich. Erläutern Sie ihre Vorgehensweise. (3P)
- 2.3.3. Berechnen Sie den pH-Wert der Säure vor der Titration. (2P)
- 2.3.4. Bestimmen Sie den Charakter der Lösung am Äquivalenzpunkt anhand der protochemischen Reihe. (1P)

3. Elektrochemie (18P)

3.1. Die galvanische Zelle (4+1+2=7P)

Eine galvanische Zelle besteht aus einer Halbzelle mit einer Kupfer-Elektrode in einer Kupfer(II)-sulfat-Lösung (1M) und einer Halbzelle mit einer Eisen-Elektrode in einer Eisen(II)-sulfat-Lösung (1M).

- 3.1.1. Zeichnen Sie ein beschriftetes dieser galvanischen Zelle und geben Sie die symbolische Schreibweise für diese galvanische Zelle an. (4P)
- 3.1.2. Berechnen Sie die Spannung für diese galvanische Zelle. (1P)
- 3.1.3. Erläutern Sie, weshalb eine Referenzhalbzelle bei der Bestimmung von Standardredoxpotentialen verwendet wird. (2P)

3.2. Vorhersagen von Reaktionen. (2+2+2=6P)

Im Labor werden folgende Versuche durchgeführt:

- 3.2.1. Ein Zinnblech wird in eine Kupfer(I)-sulfat-Lösung getaucht.
- 3.2.2. Brom wird zu einer Natriumchlorid-Lösung getropft.
- 3.2.3. Quecksilber wird zu einer Kupfer(II)-sulfat-Lösung geben.

Bestimmen Sie mit Hilfe der elektrochemischen Reihe, welche Reaktionen ablaufen können, und begründen Sie ihre Antwort. Formulieren Sie die Oxidations-, die Reduktions- und die Gesamtgleichung für die Reaktionen, die ablaufen.

3.3. Korrosion (1+2+2=5P)

- 3.3.1. Erläutern Sie, weshalb ein Schiffsrumpf (hauptsächlich Eisen) keine Kupfer-Einschlüsse (kleine Kupferteilchen) enthalten soll. Benennen Sie diese Art von Aufbau und beschreiben Sie was passiert. (1P)
- 3.3.2. Geben Sie die Teilgleichungen und die Gesamtgleichung für die Reaktionen an, die ablaufen. (2P)
- 3.3.3. Welches Metall könnte bei einem Schiffsrumpf als Opferanode verwendet werden? Begründen Sie ihre Antwort. (2P)

4. Umweltchemie (7P)

4.1. Saurer Regen (5+2=7P)

- 4.1.1. Erläutern Sie anhand von Reaktionsgleichungen wie saurer Regen entsteht. (5P)
- 4.1.2. Erklären Sie wie saurer Regen die Statuen aus Kalkstein an Gebäuden schädigt. Geben Sie sowohl die nötigen Reaktionsgleichungen wie auch schriftliche Erklärungen an. (2P)

		-	2	က	4	5	9	_		
	18 VIIIA	4,0 2 He	20,2 10 Ne	39,9 18 Ar	83,8 36 K r	131,3 54 Xe	222 86 Rn	293 118 Uuo	175,0 71 Lu	260 103 Lr
	17 VIIA 18 VIIIA		19,0 F ₉	35,5 17 CI	79,9 35 Br	126,9	210 85 At		173,0 70 Yb	252 257 258 259 260 99 ES 100 FM 101 Md 102 NO 103 Lr
gruppen	NA 91		16,0	32,1 16 S	79,0 34 Se	127,6 52 Te	209 84 PO	289 116 Uuh	167,3 168,9 173,0 68 Er 69 Tm 70 Yb	258 101 Md
grup	15 VA		14,0 Z	31,0 15 P	74,9 33 AS	121,8 51 Sb	209,0 83 Bi			257 100 Fm
	14 IVA		12,0 6 C	28,1 14 Si	63,5 65,4 69,7 72,6 29 Cu 30 Zn 31 Ga 32 Ge	118,7 50 Sn	207,2 82 Pb	289 114 Uuq	164,9 67 H0	252 99 ES
	13 IIIA		10,8 5 B	27,0 13 AI	69,7 31 Ga	114,8 49 In	204,4 81 TI		162,5 66 Dy	251 98 Cf
				12 118	65,4 30 Zn	107,9 112,4 47 Ag 48 Cd	200,6 80 Hg	277 112 Uub	158,9 65 Tb	237 244 243 247 247 93 Np 94 Pu 95 Am 96 Cm 97 Bk
e)				11 18		107,9 47 Ag	197,0 79 Au	272 111 Uuu	157,3 64 G d	247 96 Cm
men				10 VIIIB	58,9 58,7 27 Co 28 Ni	102,9 106,4 45 Rh 46 Pd	195,1 78 Pt	269 110 Uun	152,0 63 Eu	243 95 Am
er Ele				9 VIIIB	58,9 27 Co	102,9 45 Rh	192,2 77 Ir	268 109 Mt	150,4 62 Sm	244 94 Pu
Das Periodensystem der Elemente			Nebengruppen	8 VIIIB	55,8 26 Fe	101,1 44 Ru	186,2 190,2 75 Re 76 OS	261 262 263 265 268 269 272 277 277 104 Rf 105 Db 106 Sg 107 Bh 108 HS 109 Mt 110 Uun 111 Uuu 112 Uub	144,2 147 150,4 152,0 157,3 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd	237 93 Np
nsys			Nebeng	7 VIIB	52,0 54,9 24 Cr 25 Mn	99 43 TC	186,2 75 Re	262 107 Bh	144,2 60 Nd	238 92 U
riode				6 VIB		92,9 95,9 41 Nb 42 Mo	183,8 74 W	263 106 Sg	140,9 59 Pr	231 91 Pa
as Pe				5 VB	50,9 23 V		180,9 73 Ta	262 105 Db	140,1 58 Ce	232 90 Th
				4 IVB	47,9 22 Ti	91,2 40 Zr	178,5 72 Hf	²⁶¹	138,9 57 La	227 89 AC
				3 1118	45,0 21 SC	88,9 39 Y	57 bis 71 La-Lu	39 bis 103 AC-Lr	ide	
- jdi	2 114		9.0 4 Be	23,0 24,3 11 Na 12 Mg	40,1 20 Ca	87,6 38 Sr	137,3 56 Ba	226 88 Ra	Lanthanoide	Actinoide
Haupt -	1 IA	ō.Ŧ	6,9 3 Li	23,0 11 Na	39,1 19 K	85,5 37 Rb	132,9 55 Cs	223 87 Fr	Lar	Ř

Red	Ox + ze	Standardpotential E ⁰ (in Valt)
	F ₂ + 2 e	+ 2,87
2 SO ₄ ² -	S ₂ O ₈ ²⁻ + 2 e ⁻	+ 2,00
4 H₂O	H2O2 + 2 H3O" + 2 e"	+ 1,78
PbSO ₄ + 5 H ₂ O	PbO2 + HSO4 + 3 H3O + 2 e	+ 1,69
MnO ₂ + 6 H ₂ O	MnO4" + 4 H3O" + 3 e"	+ 1,68
	MnO4" + 8 H3O' + 5 e"	+ 1,49
Pb2+ 6 H2O	PbO2 + 4 H30" + 2 e"	+ 1,46
Au	Au3+ 3 e-	+ 1,42
	Cl2 + 2 e'	+ 1,36
2 Cr3+ + 21 H ₂ O	Cr2072 + 14 H30 + 6 e	+ 1,33
6 H₂O	O2 + 4 H3O' + 4 e'	+ 1,23
Mn²+ 6 H₂O	MnO2 + 4 H3O' + 2 e-	+ 1,21
Pt	Pt2. + 5 6.	+ 1,20
I2 + 18 H2O	2 IO3 + 12 H3O + 10 e	+ 1,20
2 Br	Br2 + 2 e	+ 1,07
NO + 6 H ₂ O	NO3 + 4 H3O + 3 e	+ 0,96
Нд	Hg ²⁺ + 2 e ⁻	+ 0,85
	Ag' + e'	+ 0,80
2 Hg	Hg22+ + 2 e-	+ 0,80
Fe ²	Fe ³ + e	+ 0,77
	02 + 2 H30. + 5 6.	+ 0,68
MnO ₂ + 4 OH	MnO4' + 2 H2O + 3 e	+ 0,59
2 I ⁻	I ₂ + 2e	+ 0,54
Cu	Cu' + e	+ 0,52
4 OH-	O2 + 2 H2O + 4 e	+ 0.40
2 Ag + 2 OH	Ag2O + H2O + 2 e	+ 0,34
	Cu2+ 2 e	+ 0,34
	Hq2Cl2 + 2 e	+ 0,27
	AgCI + e	+ 0,22
	5042 + 4 H30 + 2 e	+ 0,20
Cu'	Cu²+ + e-	+ 0,16
H₂S+ 2 H₂O	5 + 2 H ₃ O' + 2 e-	+ 0,14
	AgBr + e	+ 0,07
	2 H ₃ O' + 2 e'	0
	Fe ³⁺ + 3 e ⁻	-0,04
Pb	Pb2+ + 2 e.	-0,13
	Sn2+ + 2 e-	-0,14
	O2 + 2 H2O + 2e	-0,15
	AgI + e	-0,15
	Ni ² + 2 e	-0,23
	PbSO4 + 2 e	-0,36
	Cd2. + 5 6.	-0,40
	Fe ²⁺ + 2 e ⁻	-0,41
7n	Zn²+ + 2 e'	-0,76
	2 H ₂ O + 2 e	-0,83
	SO42. + H2O + 2 €.	-0,92
	N ₂ + 4 H ₂ O + 4 e	-1,16
	VI3. + 3 6.	-1,66
	Mg ² ' + 2 e	-2,38
	Na* + e	-2,71
	Ca ² + 2 e	-2,76
	Ba ₅ , + 5 e.	-2,76
	-	
	K. + e.	-2,92 -3,02

pK _S	Säure		Korrespondierende Base		
	Perchlorsäure	ICIO ₄ CIO ₄		Perchlorat-lon	
Vollständige Protonenabgabe	lodwasserstoffsäure	н	ī	lodid-lon	Keine Protonenaufnahme
	Bromwasserstoffsäure	HBr	Br	Bromid-Ion	
	Sa Izsāure	HQ	CI.	Chlorid-Ion	
	Schwefelsäure	H ₂ SO ₄	HSO4	Hydrogensulfat-lon	
	Oxonium-Ion	H ₃ O ⁺	H₂O	Wasser	
	Salpetersäure	HNO ₃	NO ₃	Nitrat-lon	
,92	Hydrogensulfat-lon	HSO₄.	SO ₄ ² ·	Sulfat-lon	12,08
2,13	Phosphorsäure	H ₃ PO ₄	H ₂ PO ₄	Dihydrogenphosphat-lon	11,87
2,22	Hexaqua-Eisen(111)-Ion	[Fe(H ₂ O) ₆] ³⁺	[Fc(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Eisen(III)-Ion	11,78
3,14	Flusssäure (Fluorwasserstoffsäure)	HF	F	Fluorid-lon	10,86
3,35	Salpetrige Säure	HNO ₂	NO ₂	Nitrit-lon	10,65
3,75	Ameisensäure (Methansäure)	нсоон	HC00.	Formiat-lon (Metbanoat-lon)	10,25
1,75	Essigsäure (Ethansäure)	СН₃СООН	CH ₃ COO	Acetat-lon (Ethanoat-lon)	9,25
1,85	Hexaqua-Aluminium-lon	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	Pentaqua-hydroxo-Aluminium-lon	9,15
5,52	Kohlensäure	H ₂ CO ₃ / H ₂ O + CO ₂	HCO₃˙	Hydrogencarbonat-Ion	7,48
5,92	Schwefelwasserstoff Säure	H₂S	HS.	Hydrogensulfid-lon	7,08
7,00	Hydrogensulfit-lon	HSO ₃	SO ₃ ² ·	Sulfit-Ion	7,00
7,20	Dihydrogenphosphat-lon	H ₂ PO ₄	HPO ₄ ²	Hydrogenphosphat-lon	6,80
,25	Ammonium-lon	NH₄ ⁺	NH ₃	Ammoniak	4,75
9,40	Blausäure (Cyanwasserstoff Säure)	HCN	CN.	Cyanid-Ion	
,60	Hexaqua-Zink(II)-lon	[Zn(H ₂ O) ₆] ²⁺	[Zn(OH)(H2O)5]†	Pentaqua-hydroxo-Zink(II)-lon	4,40
0,40	Hydrogencarbonat-Ion	HCO³.	CO ₃ ²⁻	Carbonat-Ion	3,60
2,36	Hydrogenphosphat-lon	HPO ₄ ²⁻	PO ₄ 3.	Phosphat-Ion Phosphat-Ion	1,64
3,00	Hydrogensulfid-lon	HS.	S ²⁻	Sulfid-Ion	
Keine inenabgabe	Was ser	H ₂ O	О НГ	Hydroxid-lon	, E
	Ethanol	СН₃СӉ҈ОН	CH₃CH₂O	Ethanolat-lon	Vollständige
	Ammoniak	NH ₃	NH ₂	Amid-lon	Stän
	Hydro xid-lo n	он.	O ²⁻	Oxid-lon	
	Wasserstoff	H ₂	H.	Hydrid-lon	

рКs	Indikator	Farbe der Säure	pH-Bereich des Farbumschlags	Farbe der Base	
1,70	Thymolblau	rot	1,2 - 2,8	gelb	
3,40	Methylorange	rot	3,0 - 4,4	gelb-orange	
4,70	Bromkresolgrün	gelb	3,8 - 5,4	blau	
5,00	Methylrot	rot	4,2 - 6,2	gelb	
6,50	Lackmus	rot	5,0 - 8,0	blau	
7,10	Bromthymolblau	gelb	6,0 - 7,6	blau	
8,90	Thymolblau	gelb	8,0 - 9,6	blau	
9,40	Phenolphthalein	farblos	8,2 - 10,0	ригриг	
10,00	Thymolphthalein	farblos	9,3 - 10,5	blau	
11,20	Alizaringelb R	gelb	10,1 - 12,1	rot	