EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date :	20	0.09.23	Durée :	08:15 - 11:00	Numéro candidat :		
Discipline :		Mathématiques - Mathématiques 2		Section(s):	CI		

Question 1 (6 points)

Démontrer le théorème suivant :

« Si f est une fonction continue sur [a; b], alors

1. Ia fonction $F: \mathbb{R} \to \mathbb{R}$ est dérivable sur [a; b];

$$x \to \int_{a}^{x} f(t)dt$$

2. la dérivée de F est f.

Autrement dit, la fonction F est une primitive de f. »

Question 2 (2+3=5 points)

- 1. Démontrer la propriété suivante : $\forall x \in \mathbb{R}^*_+, a \in \mathbb{R}^*_+ \setminus \{1\}, y \in \mathbb{R}, log_a(x^y) = y \cdot log_a(x)$ »
- 2. Paul a placé 15 000€ au taux annuel de 3,5%. Après combien d'années le capital de Paul aura-t-il au moins doublé pour la première fois ? Justifier !

Question 3 (3+3=6 points)

Les parties suivantes sont indépendantes :

1. Calculer la limite suivante :

$$\lim_{t \to +\infty} \left(\frac{t+3}{t-1}\right)^{2t-1}$$

2. Soit la fonction f définie sur]0;1] par $f(x) = [Arcsin(x)]^{\log_2(x^2)}$. Calculer la dérivée f' de f sur]0;1[.

Question 4 (7 points)

Résoudre l'inéquation suivante dans \mathbb{R} :

$$\log_{\sqrt{3}}(x) - \log_{\frac{1}{3}}(2x+1) \le \log_3(5x-2)$$

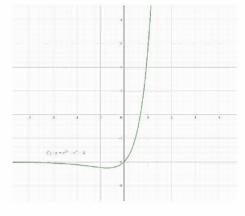
Question 5

(3 + (1 + 1 + 3) = 8 points)

1. Résoudre dans \mathbb{R} l'inéquation suivante :

$$e^{2x} - e^x - 2 \ge 0$$

- 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{(e^{2x} e^x)^2}{e^{2x}} e^x(-1 + 3e^{-x})$
 - a. Simplifier l'expression de f(x).
 - b. Utiliser les résultats du point 1. pour dresser le tableau de signe de f(x).
 - c. Calculer l'aire de la partie du plan comprise entre la courbe C_f , l'axe des abscisses et les droites d'équation x=0 et x=1.



Question 6

(4+6+4+1=15 points)

On considère la fonction f définie par :

$$f(x) = x - 2 + \ln\left(\frac{x-1}{2x+3}\right)$$

- 1. Déterminer le domaine de définition D_f de f et étudier les limites et asymptotes aux bornes de D_f . En déduire les équations d'asymptotes horizontales ou verticales éventuelles.
- 2. Montrer que C_f admet une asymptote oblique et étudier sa position relative par rapport à C_f .
- 3. Déterminer le domaine de dérivabilité, la dérivée de f et dresser le tableau de variation complet de f.
- 4. Déterminer l'équation de la tangente au point d'abscisse 2.

Question 7

((3+4)+(3+3)=13 points)

1. On considère la fonction f définie par :

$$f(x) = \frac{1}{x(3x-2)^2}$$

a. Déterminer les réels a,b et c tels que, pour tout $x \in \mathbb{R} \setminus \{0; \frac{2}{3}\}$:

$$f(x) = \frac{a}{x} + \frac{b}{3x - 2} + \frac{c}{(3x - 2)^2}$$

- b. En déduire la primitive F de f sur $I=\left]0;\frac{2}{3}\right[$ telle que $F\left(\frac{1}{2}\right)=0.$ Donner l'expression algébrique de F(x) sur I sans valeur absolue.
- 2. Calculer:

$$\int_{-2}^{2} \frac{x}{\sqrt{2x+5}} dx$$

$$\int \frac{1}{1 + \cos(8x)} \, dx$$

Examen de fin d'études secondaires

Sections B, C, D, E, F, I

Formules trigonométriques

$\sin^2 x + \cos^2 x = 1$								
$\cos^2 x = \frac{1}{1 + \tan^2 x}$	$\sin^2 x = \frac{\tan^2 x}{1 + \tan^2}$	\overline{v}	$1+\tan^2 x=\frac{1}{\cos^2 x}$					
$\sin(\pi - x) = \sin x$	$\sin(\pi + x) = -\sin(\pi + x)$	n x	$\sin\left(-x\right) = -\sin x$					
$\cos(\pi - x) = -\cos x$	$\cos(\pi + x) = -\cos(\pi + x)$	os x	$\cos(-x) = \cos x$					
$\tan(\pi - x) = -\tan x$	$\tan(\pi+x)=\tan$	x	$\tan \langle -x \rangle = -\tan x$					
$\sin\left(\frac{\pi}{2} - x\right) = \cos x$	$\sin\left(\frac{\pi}{2} + x\right) = \cos x$	c						
$\cos(\frac{\pi}{2} - x) = \sin x$	$\cos(\frac{\pi}{2} + x) = -\sin(\frac{\pi}{2} + x)$	n x						
$\tan\left(\frac{\pi}{2} - x\right) = \cot x$	$\tan\left(\frac{\pi}{2} + x\right) = -c$	$\operatorname{ot} x$						
$\sin(x+y) = \sin x \cos y + \cos x$ $\sin(x-y) = \sin x \cos y - \cos x$		$\tan(x+y) =$	$\frac{\tan x + \tan y}{1 - \tan x \tan y}$					
$\cos(x+y) = \cos x \cos y - \sin x$								
	$\cos(x+y) = \cos x \cos y - \sin x \sin y \qquad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ $\cos(x-y) = \cos x \cos y + \sin x \sin y$							
$\sin 2x = 2\sin x \cos x$	$\cos^2 x = \frac{1}{2}(1 + \cos^2 x)$	(2x)						
$\cos 2x = \cos^2 x - \sin^2 x$	$\sin^2 x = \frac{1}{2}(1 - \cos x)$	2x)						
$\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$	$\cos 2x = \frac{1 - \tan^2}{1 + \tan^2}$	$\frac{x}{x}$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$					
$\sin 3x = 3\sin x - 4\sin^3 x$	cos	$x = -3\cos x +$	$4\cos^3 x$					
$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$			aire (m. l. a)					
$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$		$\tan p + \tan q$	$=\frac{\sin(p+q)}{\cos p\cos q}$					
$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$		$\tan p - \tan q = \frac{\sin \left(p - q \right)}{\cos p \cos q}$						
$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$	<u>1</u>		$\cos p \cos q$					
$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$								
$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$								
$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$								