

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES **2021**

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques 2	1	Durée de l'épreuve :	3h
		Date de l'épreuve :	17/09/2021

Question 1 (3+3=6 points)

Démontrer les propriétés suivantes :

1.
$$\forall a,b \in \mathbb{R}_+^* \setminus \{1\}, \forall x \in \mathbb{R}_+^*, log_a(x) = \frac{log_b(x)}{log_b(a)}$$

2. Si F et G sont des primitives de f sur I et I est un intervalle inclus dans le domaine de continuité de f, alors il existe une constante G telle que G0 = G0, pour tout réel G1.

Question 2 $((4,5+4,5)+2=11 \ points)$

1. Résoudre dans \mathbb{R} :

a)
$$\frac{4 \cdot 4^x - 4 \cdot 2^x + 4^0}{0.5^x - 3} > 0$$
 b)
$$\log_{0,2}(x^3) \le -\log_{\sqrt{5}}(x - 2)$$

2. Au 1^{ier} janvier, 15000€ sont placés à un taux de 4%. Sachant que les intérêts sont payés à la fin de chaque année, après combien d'années le capital investi aura-t-il doublé ?

Question 3 (4 points)

Calculer la limite suivante :

$$\lim_{y \to +\infty} \left(\frac{3y+1}{3y-4}\right)^{y-1}$$

Question 4: $(3+2+4+1.5+3.5+6=20 \ points)$

On considère la fonction f définie par :

$$f(x) = e^{-x} \cdot (-2x^2 + x + 1)$$

Déterminer:

- 1. le domaine de définition D_f de f, et étudier les limites et asymptotes aux bornes de D_f ;
- 2. $D_{f'}$ et montrer que $f'(x)=e^{-x}x(2x-5)$; dresser le tableau de variation complet de f et préciser les extrema éventuels en indiquant des valeurs approchées à 10^{-2} près ;
- 3. $D_{f''}$ et la dérivée seconde de f ; dresser le tableau de concavité et préciser les coordonnées des points d'inflexion éventuels en indiquant des valeurs approchées à 10^{-2} près ;
- 4. les points d'intersection de C_f avec les axes des abscisses ;
- 5. Représenter graphiquement la fonction f dans un repère orthonormé (unité : 1cm) en indiquant tous les éléments importants ;
- 6. Calculer l'aire A de la partie du plan délimitée par C_f , l'axe des abscisses et les droites d'équation x = 1 et x = 3.

Question 5

((4+3)+4=11 points)

1. Calculer:

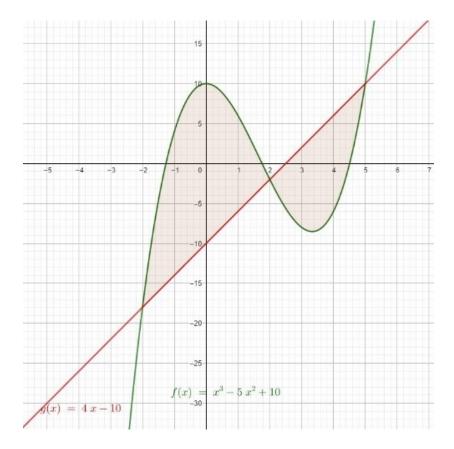
a)
$$\int \frac{2x-3}{\sqrt{9-x^2}} dx$$
 b) $\int_0^{\frac{\pi}{4}} \frac{\sin(4y)}{1+\sin^2(2y)} dy$

2. Soit la fonction f définie sur \mathbb{R}_+^* par $f(x) = \ln(x) \cdot (2x - 3)$. Déterminer la primitive F de f qui prend la valeur $\frac{1}{2}$ en x = 3.

Question 6 (5+3=8 points)

Soient f et g les fonctions définies sur \mathbb{R} par $f(x) = x^3 - 5x^2 + 10$ et g(x) = 4x - 10.

- 1. Déterminer algébriquement la position relative des courbes représentatives \mathcal{C}_f et \mathcal{C}_g .
- 2. Calculer l'aire A de la partie du plan délimitée par celles-ci.



 $\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$

Formules trigonométriques