

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES Sessions 2022

DISCIPLINE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques 2	СС	Date de l'épreuve :	13.06.22
		Durée de l'épreuve :	08:15 - 11:10
		Numéro du candidat :	A 72 - 1 - 1

Instructions

- L'élève répond à toutes les questions de la partie obligatoire.
- L'élève répond à exactement 1 question de la partie au choix. Il indique obligatoirement son choix en marquant d'une croix la case appropriée ci-dessous.

Seule la réponse correspondant à la question choisie par l'élève sera évaluée. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie obligate	oire (51 points)		
Question	Nb points	Sujet	Obligatoire
1	4	Question de cours	x
2	12	Inéquation, équation, limite	x
3	20	Etude de fonction	x
4	15	Intégrales	х
Partie au choi	x (9 points)		
Choisissez 1 q	uestion parmi	es 2 suivantes et indiquez votre choix avec	un X
Question	Nb points	Sujet	Choix du candidat
5	9	Limites et asymptotes	
6	9	Limites et asymptotes	

Question 1 [4 points]

Démontrez la propriété suivante :

Si F et G sont des primitives de f sur un intervalle I inclus dans le domaine de continuité de f, alors il existe une constante C telle que F(x) - G(x) = C, pour tout réel x de I.

Question 2 [5+4+3=12 points]

- 1) Résolvez l'inéquation suivante dans \mathbb{R} : $\log_{\sqrt{3}}(1+2x) + \log_{\frac{1}{3}}(1-x) \leq \log_3(1-2x)$
- 2) Résolvez l'équation suivante dans \mathbb{R} : $\dfrac{-1-e^{-2x}}{1+e^{2x}}+\dfrac{1}{4}=0$
- 3) Calculez la limite suivante : $\lim_{x \to -\infty} \left(\frac{x-1}{x+5} \right)^{\frac{1}{2}x+1}$

Question 3 [(4+1,5+5,5+1+3)+5=20 points]

Soit la fonction f définie par $f(x) = \frac{1}{2}(x^2 - 6x + 10)e^{x-1}$.

- 1) (a) Déterminez le domaine de définition de f et étudiez son comportement asymptotique.
 - (b) Montrez que $f'(x)=\frac{(x-2)^2}{2}e^{x-1}$
 - (c) Déterminez la dérivée seconde de f et établissez le tableau de variation et de concavité complet de f en indiquant les extrema et points d'inflexion éventuels.
 - (d) Déterminez l'équation réduite de la tangente t au graphique G_f de la fonction f au point d'abscisse 0.
 - (e) Représentez graphiquement G_f et t dans un repère orthonormé d'unité 1 cm (respectivement 2 carreaux).
 - 2) Calculez l'aire de la partie du plan délimitée par G_f , l'axe des abscisses et les droites d'équation x=-3 et x=3. Indiquez la valeur exacte ainsi qu'une valeur approchée au centième près de cette aire.

Question 4

[5+5+5=15 points]

Calculez les valeurs exactes des intégrales suivantes :

1)
$$\int_1^{e^2} \frac{3 \ln x - 2x^2 \ln^2 x}{x^3} dx$$

2)
$$\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (1 + \cos^2 x) \sin^3 x \ dx$$

3)
$$\int_0^{\frac{1}{2}} \frac{8x^2 + 12x}{(4x^2 + 1)(4x + 1)} dx$$
,

après avoir déterminé les réels a, b et c tels que $\frac{8x^2+12x}{(4x^2+1)(4x+1)}=\frac{ax+b}{4x^2+1}+\frac{c}{4x+1}.$

Question 5 (au choix)

[6+3=9 points]

On donne la fonction f définie par $f(x) = 2x - 1 - 3 \ln \frac{x}{x+2}$

- 1) Déterminez le domaine de définition de f et étudiez le comportement asymptotique de f aux bornes du domaine de f.
- 2) Etudiez la position du graphique G_f de f par rapport à ses asymptotes éventuelles.

Question 6 (au choix)

[2+5+2=9 points]

On donne la fonction f définie par $f(x) = 2x - 1 + \frac{e^{2x}}{e^x + 1}$.

- 1) Etudiez le comportement asymptotique de G_f en $-\infty$.
- 2) Etudiez le comportement asymptotique de G_f en $+\infty$.
- 3) Etudiez la position de G_f par rapport à son asymptote en $-\infty$.

Examen de fin d'études secondaires

Sections B, C, D, E, F

Formules trigonométriques

$\sin^2 x + \cos^2 x = 1$ $\cos^2 x = \frac{1}{1 + \tan^2 x}$	$\sin^2 x = \frac{\tan^2 x}{1 + \tan^2 x}$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
$\sin(\pi - x) = \sin x$ $\cos(\pi - x) = -\cos x$ $\tan(\pi - x) = -\tan x$	$\sin(\pi + x) = -\sin x$ $\cos(\pi + x) = -\cos x$ $\tan(\pi + x) = \tan x$	$\sin(-x) = -\sin x$ $\cos(-x) = \cos x$ $\tan(-x) = -\tan x$
$\sin\left(\frac{\pi}{2} - x\right) = \cos x$ $\cos\left(\frac{\pi}{2} - x\right) = \sin x$ $\tan\left(\frac{\pi}{2} - x\right) = \cot x$	$\sin\left(\frac{\pi}{2} + x\right) = \cos x$ $\cos\left(\frac{\pi}{2} + x\right) = -\sin x$ $\tan\left(\frac{\pi}{2} + x\right) = -\cot x$	
$\sin(x+y) = \sin x \cos y + \cos x \sin x$ $\sin(x-y) = \sin x \cos y - \cos x \sin x$ $\cos(x+y) = \cos x \cos y - \sin x \sin x$ $\cos(x-y) = \cos x \cos y + \sin x \sin x$	$\tan(x+y) = $ $\sin y$ $\tan(x-y) = $	$= \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $= \frac{\tan x - \tan y}{1 + \tan x \tan y}$
$\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x$ $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$	$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$
$\sin 3x = 3\sin x - 4\sin^3 x$	$\cos 3x = -3\cos x + $	1 0011 11
$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$ $\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$	$\tan p + \tan q$	$=\frac{\sin\left(p+q\right)}{\cos p\cos q}$
$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$ $\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$	an p - an q	$=\frac{\sin\left(p-q\right)}{\cos p\cos q}$
$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x+y) + \sin(x+y) + \sin(x+y) + \cos(x+y) + $	(x-y)]	