EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES

Sessions 2023 – QUESTIONNAIRE ÉCRIT

Date:	22	.09.23	Durée :	08:15 - 10:00	Numéro candidat :	
Discipline :		Mathématiques - Mathématiques-Structures		Section(s):	CD / CD-4LANG	

Question 1

(12 points)

Soit
$$P(z) = z^3 + (1+2i)z^2 - (1-10i)z - 3(7+4i)$$

Résoudre dans \mathbb{C} l'équation P(z) = 0 sachant que P admet une racine imaginaire pure.

Question 2

((4+4)+10 = 18 points)

- 1) Soient les nombres complexes $z_1 = -4\sqrt{3} + 4i$ et $z_2 = -\sqrt{2}i \cdot \text{cis}\left(\frac{\pi}{4}\right)$
 - a) Écrire z_1 et z_2 sous forme trigonométrique.
 - b) Écrire $Z = \frac{\overline{z_1}}{(z_2)^2}$ sous forme trigonométrique, puis sous forme algébrique.
- 2) Soit le nombre complexe $z = 2 \cdot \left(\sqrt{2} + \sqrt{6}i\right)^4 \cdot (-1 i)^6$ Calculer les racines cinquièmes complexes de z et porter les points dont les affixes sont les racines trouvées dans le plan de Gauss.

Question 3

(4+10 = 14 points)

On donne le système suivant, où m est un paramètre réel :

$$\begin{cases} 2mx + 4y + (m-1)z = m-2\\ -x + (m+2)y - 2z = 3\\ -my + z = 2-m \end{cases}$$

- 1) Déterminer les valeurs du paramètre réel m pour lesquelles le système admet une solution unique.
- 2) Résoudre et interpréter géométriquement le système si m = 4, si m = -1 et si m = -4.

Question 4

(4+5+4+3 = 16 points)

Dans un repère orthonormé de l'espace, on considère les points

$$A(3;-2;1)$$
 $B(4;0;-1)$ $C(-2;-6;4)$.

- 1) Établir une équation cartésienne du plan π_1 passant par les points A, B et C. Dans la suite on pose $\pi_1 \equiv -2x + 7y + 6z + 14 = 0$
- 2) Établir un système d'équations paramétriques et un système d'équations cartésiennes de la droite d perpendiculaire à π_1 et passant par le point D(-2;16;8).
- 3) Déterminer les coordonnées du point H, point de percée de la droite d dans π_1 .
- 4) Établir un système d'équations paramétriques du plan π_2 contenant la droite d et le point E(-2;1;2).