

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES Sessions 2022

DISCIPLINE	SECTION(S)	ÉPREUVE ÉCRITE	
Mathématiques 1	CD	Date de l'épreuve :	15.06.22
		Durée de l'épreuve :	08:15 - 10:10
		Numéro du candidat :	

Instructions

- L'élève indique son numéro de candidat dans le tableau ci-dessus.
- L'élève répond à toutes les questions de la partie obligatoire.
- L'élève répond à exactement 1 question de la partie au choix. Il indique obligatoirement son choix en marquant d'une croix la case appropriée ci-dessous.

Seule la réponse correspondant à la question choisie par l'élève sera évaluée. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie obliga	toire (48 point	is)	
Question	Nb points	Sujet	Obligatoire
1	17	Nombres complexes	х
II	14	Systèmes linéaires	х
III	17	Géométrie analytique de l'espace	х
Partie au cho	ix (12 points)		
Choisissez 1	question parm	i les 2 suivantes et indiquez votre choix av	ec un X
Question	Nb points	Sujet	Choix du candidat
IV	12	Nombres complexes	
V	12	Nombres complexes	

QUESTION I (Question obligatoire)

(17 (13+4) points)

1) On donne le polynôme P à coefficients complexes :

$$P(z) = z^3 + (2 - 11i)z^2 - 3(13 + 5i)z - 18(1 - 3i).$$

Résoudre l'équation P(z) = 0 sachant que le polynôme P admet une racine imaginaire pure.

2) Résoudre dans C:

$$-2iz - \overline{z} = -1 + i$$

QUESTION II (Question obligatoire)

(14 (4+5+5) points)

On donne le système :

(s)
$$\begin{cases} (x + 2y - z = -1) \\ (m+1)x - y - z = 3 \\ 2x - y - mz = 3 \end{cases}$$

- 1) Déterminer les valeurs du paramètre réel m pour lesquelles le système (s) admet une solution unique.
- 2) Résoudre et interpréter géométriquement le système (s) pour m = 1.
- 3) Résoudre et interpréter géométriquement le système (s) pour m = 3.

QUESTION III (Question obligatoire)

(17 (4+2+2+2+4+3) points)

Dans un repère orthonormé de l'espace on considère les points A(1;2;1), B(-1;6;2) et C(-2;-3;-3).

- 1) Déterminer une équation cartésienne du plan $\pi = (ABC)$ après avoir vérifié que les points A, B et C ne sont pas alignés.
- 2) Déterminer un système d'équations paramétriques de la droite d perpendiculaire au plan π et passant par le point A.
- 3) Déterminer une équation cartésienne du plan π' parallèle au plan π et passant par le point D(6;1;-2).
- 4) Déterminer l'intersection de la droite d avec le plan π' .
- 5) Déterminer une équation cartésienne du plan π'' perpendiculaire au plan π et contenant les points A et B.
- 6) Déterminer un système d'équations paramétriques de la droite *p* perpendiculaire à la droite *d* passant par le point *D*.

QUESTION IV (Question au choix)

(12 (4+4+4) points)

Soient
$$z_1 = \frac{4\sqrt{3} + 20i}{-1 + 3i\sqrt{3}}$$
 et $z_2 = -4\sqrt{3}cis(\frac{\pi}{3})$.

- 1) Écrire z_1 sous forme algébrique et sous forme trigonométrique.
- 2) Calculer $\frac{(z_1)^5}{(z_2)^4}$ et écrire le résultat sous forme algébrique.
- 3) Calculer les racines cubiques complexes de $z_3 = z_1 + z_2$ et écrire les résultats sous forme algébrique. Porter les points dont les affixes sont les racines trouvées dans le plan de Gauss.

QUESTION V (Question au choix)

(12 (5+3+2+2) points)

On donne les nombres complexes : $z_1 = \frac{9\sqrt{2} - i\sqrt{6}}{5 + i\sqrt{3}}$, $z_2 = 6cis\left(\frac{3\pi}{4}\right)$ et $Z = \frac{z_1^8}{z_2}$.

- 1) Écrire z_1 et ${\it Z}$ sous forme trigonométrique.
- 2) Écrire Z sous forme algébrique.
- 3) En déduire les valeurs exactes de $\cos\left(-\frac{\pi}{12}\right)$, $\sin\left(-\frac{\pi}{12}\right)$ et $\tan\left(-\frac{\pi}{12}\right)$.
- 4) Démontrer que $(2 \cdot z_1 + z_2)^2$ est un nombre réel strictement négatif.